Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chụy @Trần Thị Trúc Linh ơi! làm hộ em bài này cái
kuroba kaitoNhã DoanhngonhuminhPhạm Nguyễn Tất Đạt
Bạn tự vẽ hình nha
Xét tg ABC có các đường trung tuyến AM, BD, CE. Đặt BC= a; AC= c. Theo bài ra ta có: AM< \(\frac{b+c}{2}\)
CMTT: BD< \(\frac{a+c}{2}\) ; CE < \(\frac{a+b}{2}\)
Suy ra AM+BD+CE < a+b+c
Ta có BD+CE> \(\frac{3}{2}\) a
CMTT ta có:AM+CE > \(\frac{3}{2}\) b
AM+BD> \(\frac{3}{2}\) c
Suy ra 2(AM+BD+CE) > \(\frac{3}{2}\) ( a+c+c)
Do đó : AM+BD+CE > \(\frac{3}{4}\) ( a+b+c )
*) Chứng minh: AM + BD + CE < AB + BC + CA
+) Trên tia đối của tia MA lấy K sao cho MÃ = MK
Khi đó, dễ dàng => tam giác BMK = CMA (c - g - c) => BK = AC
+) Xét tam giác ABK có: AK < AB +BK mà AK = 2.AM ; BK = AC
=> 2.AM < AB + AC
Tương tự, ta có: 2.BD < AB + BC
2.CE < AC + BC
Cộng từng vế của
=> 2.(AM + BD + CE) < 2. (AB + BC + CA)
=> ÂM + BD + CÉ < AB + BC + CA
*) Chứng minh:
(AB + BC + CA) < AM + BD + CE
+) Xét tam giác AGB có: AG + GB > AB
mà AG = .AM ; BG = .BD (do G là trong tâm tam giác ABC)
.(AM + BD) > AB
+) Tương tự, ta có: 2/3
(AM + CE) > AC; 2/3
(BD + CE) > BC
=> 2/3.2. (AM + BD + CE) > AB + BC + CA
<=> (ÂM + BD + CE) > AB + BC + CA
=> AM + BD + CE > (AB + BC + CA)
=> ĐPCM
Trên tia đối của MA lấy K sao cho AM=MK
Xét tam giác ABM và tam giác KCM có
BM=MC(gt)
AM=MK(gt)
góc AMB= góc CMK( đối đỉnh)
=> tam giác ABM= tam giác KCM( c-g-c)
=> AB=KC
Áp dụng bất đẳng thức tam giác ta có
AK <AC+CK
<=> 2AM<AC+AB
=> AM< (AC+AB)/2