K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2020

Bài 2:

A B C M N P

a) Xét tam giác BMC và tam giác MCN có:

Chung đường cao hạ từ M xuống BN, 2 đáy BC=CN 

\(\Rightarrow S_{BMC}=S_{MCN}\)

\(\Rightarrow S_{BMN}=2S_{BMC}\)(1)

Xét tam giác ABC và tam giác BMC có:

Chung đường cao hạ từ C xuống đường thẳng AM , 2 đáy AB=BM

\(\Rightarrow S_{ABC}=S_{BMC}\)(2)

Từ (1) và (2) \(\Rightarrow S_{BMN}=2S_{ABC}\)

CMTT \(S_{APM}=2S_{ABC};S_{PCN}=2S_{ABC}\)

\(\Rightarrow S_{PMN}=S_{PCN}+S_{APM}+S_{BMN}+S_{ABC}\)

\(=7S_{ABC}\left(đpcm\right)\)

10 tháng 3 2020

Bài 3: 

Áp dụng tính chất 2 tam giác có chung đường cao thì tỉ số diện tích bằng tỉ số 2 đáy tương ứng với đường cao đó, ta có:

\(BP=\frac{1}{3}BC\Rightarrow S_{ABP}=\frac{1}{3}S_{ABC}\)

Tương tự có \(\hept{\begin{cases}S_{BMC}=\frac{1}{3}S_{ABC}\\S_{CAN}=\frac{1}{3}S_{ABC}\end{cases}}\)

\(\Rightarrow S_{ABP}+S_{BMC}+S_{CAN}=S_{ABC}\)

\(\Rightarrow S_{ANE}+S_{BNEF}+S_{BFP}+S_{BFP}+S_{CPFI}+S_{CMI}+S_{CMI}+S_{MIEA}+S_{ANE}\)

\(=S_{ANE}+S_{BNEF}+S_{CPFI}+S_{BFP}+S_{CPFI}+S_{CMI}+S_{MIEA}+S_{EFI}\)

\(\Rightarrow S_{ANE}+S_{BFP}+S_{CMI}=S_{EFI}\left(đpcm\right)\)

14 tháng 2 2020

ARMQCPB

Từ A kẻ AM // BC (M ∈ RP )

Xét △QPC có AM // PC

\(\Rightarrow\frac{QC}{QA}=\frac{PC}{AM}\)(Hệ quả định lí Ta-lét)     (1)

Xét △RBP có AM // BP

\(\Rightarrow\frac{RA}{RB}=\frac{AM}{BP}\)(Hệ quả định lí Ta-lét)     (2)

Từ (1) và (2) suy ra :

\(\frac{BP}{PC}\cdot\frac{CQ}{QA}\cdot\frac{AR}{RB}=\frac{BP}{PC}\cdot\frac{PC}{AM}\cdot\frac{AM}{BP}=1\)(ĐPCM)

23 tháng 5 2021

A B C P M N D E F

a) Ta có ^APB = ^BAC/2 + ^ABC/2 + ^ACB = 900 + ^ACB/2 = ^AMP; ^BAP = MAP

Suy ra \(\Delta\)AMP ~ \(\Delta\)APB (g.g) => \(\frac{AM}{PM}=\frac{AP}{BP}\). Tương tự \(\frac{PN}{BN}=\frac{AP}{BP}\)

Từ đó \(\frac{AM}{BN}.\frac{PN}{PM}=\left(\frac{AP}{BP}\right)^2\). Dễ thấy PM = PN, vậy \(\frac{AM}{BN}=\left(\frac{AP}{BP}\right)^2\)

b) Theo hệ thức lượng và tam giác đồng dạng, ta có biến đổi sau:

\(\frac{AM}{AC}+\frac{BN}{BC}+\frac{CP^2}{BC.AC}\)

\(=\frac{AM}{AP}.\frac{AP}{AC}+\frac{BN}{BP}.\frac{BP}{BC}+\frac{CP^2}{BC.AC}\)

\(=\frac{AP^2}{AB.AC}+\frac{BP^2}{BA.BC}+\frac{CP^2}{CA.CB}\)

\(=\frac{AP^2.BC+BP^2.CA+CP^2.AB}{BC.CA.AB}\)

\(=\frac{AP^2.\sin A+BP^2.\sin B+CA^2.\sin C}{2S}\)(S là diện tích tam giác ABC)

\(=\frac{AP^2.\sin\frac{A}{2}.\cos\frac{A}{2}+BP^2.\sin\frac{B}{2}.\cos\frac{B}{2}+CP^2.\sin\frac{C}{2}.\cos\frac{C}{2}}{S}\)

\(=\frac{FA.FP+DB.DP+EC.EP}{S}=\frac{dt\left[AFPE\right]+dt\left[BDPF\right]+dt\left[CEPD\right]}{S}=1.\)