Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Theo đề,ta có:
\(\left\{{}\begin{matrix}\dfrac{a}{3}=\dfrac{b}{5}\\\dfrac{b}{1}=\dfrac{c}{2}\end{matrix}\right.\Leftrightarrow\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{10}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{10}=\dfrac{a+b+c}{3+5+10}=\dfrac{180}{18}=10\)
Do đó: a=30; b=50; c=100
c: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{a+b+c}{3+5+7}=\dfrac{180}{15}=12\)
Do đó: a=36; b=60; c=84
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
a, Ta có : \(A:B:C=2:3:4\Rightarrow\frac{A}{2}=\frac{B}{3}=\frac{C}{4}\)
và \(A+B+C=180^0\)(tổng 3 góc trong tam giác)
Theo tính chất dãy tỉ số bằng nhau ta có ;
\(\frac{A}{2}=\frac{B}{3}=\frac{C}{4}=\frac{A+B+C}{2+3+4}=\frac{180}{9}=20\Rightarrow A=40^0;B=60^0;C=80^0\)
tương tự với b nhé