Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
+ ΔABC có Aˆ+ABCˆ+ACBˆ=180o. hay 60o+ABCˆ+ACBˆ=180o→ABCˆ+ACBˆ=120o
→ABCˆ+ACBˆ2=60o=ABCˆ2+ACBˆ2=B1ˆ+C1ˆ
+ Gọi CN∩BM=G
+ Δ có B1ˆ+C1ˆ+BGCˆ=180o. Hay 60o+BGCˆ=180o→BGCˆ=120o
+ Gọi GD là tia phân giác BGCˆ→G2ˆ=G3ˆ=60o
+ Tính G1ˆ=G4ˆ=G2ˆ=G3ˆ=60o
+ CM ΔNGB=ΔDGB (gcg) →BN=DB (2 cạnh tương ứng)
+CM ΔMGC=ΔDGC(gcg) →CM=CD (2 cạnh tương ứng)
+ Ta có BC=BD+CD=BN+CM (đpcm)
A B C D M E F
a) Do AD // FM nên \(\widehat{BAD}=\widehat{AFE}\) (Hai góc đồng vị)
Cũng do AD // FM nên \(\widehat{DAC}=\widehat{AEF}\) (Hai góc so le trong)
AD là phân giác nên \(\widehat{BAD}=\widehat{DAC}\)
Vậy nên \(\widehat{AEF}=\widehat{AFE}\)
b) Ta thấy \(\widehat{MEC}=\widehat{AEF}\) (Hai góc đối đỉnh)
Mà \(\widehat{AEF}=\widehat{AFE}\) (cma)
Vậy nên \(\widehat{MEC}=\widehat{AFE}\).
mình ko biết vẽ hình trên này bạn tự vẽ đi
ta có:
ME//AD suy ra \(\hept{\begin{cases}DAF=AFE\left(soletrong\right)\\DAC=AEF\left(dongvi\right)\end{cases}}\) mà \(DAC=DAF\) vì AD là phân giác góc A
\(\Rightarrow AEF=AFE\)
A B C D Q P
Cm: Ta có: MP // AD (gt)
=> \(\widehat{DAQ}=\widehat{AQD}\) (so le trong)
\(\widehat{BAD}=\widehat{P}\) (đồng vị)
Mà \(\widehat{BAD}=\widehat{DAQ}\) (gt)
=> \(\widehat{AQP}=\widehat{P}\)
=> t/giác APQ có 2 góc bằng nhau