Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C x y
Ta có:
góc ABx = 900- góc ABC
góc ACy = 900 - góc ACB
=> góc ABx + góc ACy = 90+90-(góc ABC + góc ACB)
= 180 - 90 = 90
Vạy góc ABx + ACy = 900
Bx vuông góc với BC , Cy vuông góc cới BC => CBx= 90 độ ; BCy = 90 độ
CBx = ABx + ABC = 90 độ (1)
BCy = ACB + ACy = 90 độ (2)
Từ (1) và (2) => ABx+ ABC + ACB + ACY = 90 + 90 = 180 độ (3)
TAm giác ABC có A = 90 độ => ABC +ACB = 90 độ thay vào (3) ta có:
ABx + ACy + 90 độ = 180 độ
=> ABx + ACy = 18 0 - 90 = 90
A B C D x
a) \(\Delta ABC\)có: \(\widehat{ACB}=180^o-75^o-60^o=45^o\)
\(\Delta\)DAB vuông tại A có: \(\widehat{DBA}\)=60o-15o=45o
=> \(\Delta\)DAB cân tại A => \(\widehat{ADB}\)=45o
Tứ giác ABCD có: \(\widehat{ADB}=\widehat{ACB}\left(=45^o\right)\)
=> Tứ giác ABCD nội tiếp đường tròn
=> \(\widehat{DCB}+\widehat{DAB}=180^o\)
=> \(\widehat{DCB}=90^o\)
=> DC _|_ BC(đpcm)
b) \(\Delta\)ABD vuông cân tại A nên AD=AB=1
=> BD2=AB2+AD2=12+12=2
Xét \(\Delta\)DCB vuông tại C có:
CD2+BC2=BD2=2
Vậy BC2+CD2=2
A B C E F x y M I K
a) Gọi I là trung điểm của AB,
K là trung điểm của AC.
Ta có:
\(IA=IE=MK=\frac{1}{2}AB\)
\(KF=KA=IM=\frac{1}{2}AC\)
TA CÓ TAM GIÁC IAE VÀ AKF LẦN LƯỢT CÂN TẠI I VÀ K
\(\Rightarrow\widehat{EIB}=2\widehat{xAB}=42^o;\widehat{CKF}=2\widehat{CAY}=42^o\)
\(\Rightarrow\widehat{EIB}=\widehat{CKF}\)
MI//AC
=> BIM=BAC ( đồng vị) (1)
M//AB
=> MKC=BAC (đồng vị)(2)
từ (1) và (2)
\(\Rightarrow\widehat{BIM}=\widehat{MKC}\)
TỪ ĐÂY TA CÓ THỂ DỄ DÀNG CÓ EIM=MKF
=> \(\Delta EIM\)= \(\Delta MKF\)
=> ME = MF
=> TAM GIÁC MEF cân tại M
mk ko biết nhưng bạn có thể vào trang web : toanh7.edu.vn hoặc h.vn để đước giải đáp tốt hơn.
Trên tia AM lấy điểm A’ sao cho AM = MA’
Dễ chứng minh được ∆AMC = ∆A’MB ( g.c.g)
A’B = AC ( = AE) và góc MAC = góc MA’B
AC // A’B => góc BAC + góc ABA’ = 180 0 (cặp góc trong cùng phía)
Mà góc DAE + góc BAC = 180 0 => góc DAE = góc ABA’
Xét ∆DAE và ∆ABA’ có : AE = A’B , AD = AB (gt)
góc DAE = góc ABA’ ∆DAE = ∆ABA’(c.g.c)
góc ADE = góc BAA’ mà góc HAD + góc BAA’ = 90 0
=> góc MAD + góc ADE = 90 0 . Suy ra MA vuông góc với DE
x y A B C E H K D
a ) Xét \(\Delta ABD\) và \(\Delta EBC\) có :
\(AB=BE\)
\(\widehat{ABD}=\widehat{EBC}\) ( cùng bằng \(90^o-\widehat{ABC}\) )
\(BD=BC\)
Suy ra \(\Delta ABD=\Delta EBC\left(c.g.c\right)\)
\(\Rightarrow DA=EC\) ( hai cạnh tương ứng )
b , Gọi giao điểm của DA với BC và EC theo thứ tự là H và K
Ta có : \(\Delta ABD=\Delta EBC\left(cmt\right)\)
\(\Rightarrow\widehat{ADB}=\widehat{ECB}\) . Do đó \(\widehat{BDH}=\widehat{KCH}\)
Xét \(\Delta DBH\) và \(\Delta CKH\)có :
\(\widehat{BDH}=\widehat{KCH},\widehat{DHB}=\widehat{CHK}\) nên \(\widehat{DBH}=\widehat{CKH}\)
Do \(\widehat{DBH}=90^o\) nên \(\widehat{CKH}=90^o\)
Vậy \(DA\perp EC\)
ABx + ACy = 90 độ bạn ưi
tk mình nhé
thank
^_^
Tam giác ABC vuông tại A
=> góc B + góc C = 90 độ
Ta có : \(\widehat{CBx}+\widehat{BCy}=90^o+90^o=180^o\)
=> \(\widehat{ABx}+\widehat{ABC}+\widehat{ACB}+\widehat{ACy}=180^o\)
\(\Rightarrow\widehat{ABx}+\widehat{ACy}+90^o=180^o\)
\(\Rightarrow\widehat{ABx}+\widehat{ACy}=90^o\)