Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta ABC\)có:
\(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^0\)(định lí).
\(\Rightarrow\left(\widehat{BAC}+\widehat{ABC}\right)=180^0-\widehat{ACB}\).
Xét \(\Delta PAB\)có:
\(\widehat{APB}+\widehat{PAB}+\widehat{ABP}=180^0\)(định lí).
\(\Rightarrow\widehat{APB}=180^0-\left(\widehat{PAB}+\widehat{ABP}\right)\).
\(\Rightarrow\widehat{APB}=180^0-\frac{\widehat{BAC}+\widehat{ABC}}{2}\).
\(\Rightarrow\widehat{APB}=180^0-\frac{180^0-\widehat{ACB}}{2}\).
\(\Rightarrow\widehat{APB}=90^0+\frac{\widehat{ACB}}{2}\)(điều phải chứng minh).
Ta lại có:
\(\widehat{AMP}=\widehat{MPC}+\widehat{MCP}\)(tính chất góc ngoài của \(\Delta MPC\)).
\(\Rightarrow\widehat{AMP}=90^0+\frac{\widehat{ACB}}{2}\).
Do đó \(\widehat{APB}=\widehat{AMP}\left(=90^0+\frac{\widehat{ACB}}{2}\right)\).
Xét \(\Delta MAP\)và \(\Delta PAB\)có:
\(\widehat{AMP}=\widehat{APB}\)(chứng minh trên).
\(\widehat{MAP}=\widehat{PAB}\)(giả thiết).
\(\Rightarrow\Delta MAP~\Delta PAB\left(g.g\right)\).
\(\Rightarrow\frac{AP}{AB}=\frac{AM}{AP}\)(tỉ số đồng dạng).
\(\Rightarrow AB.AM=AP.AP=AP^2\)(điều phải chứng minh).
a: Xét ΔABM vuông tại M và ΔACN vuông tại N có
góc A chung
Do đo: ΔABM đồng dạng với ΔACN
Suy ra:AM/AN=AB/AC
hay AM/AB=AN/AC
Xét ΔAMN và ΔABC có
AM/AB=AN/AC
góc A chung
Do đo: ΔAMN đồng dạng với ΔABC
b:
Gọi K là trung điểm của MC suy ra: MK=KC=1/2 MC
Do đó: AM=MK
DK là đường trung bình của tam giác BMC nên DK song song với BM và DK =1/2 BM (2)
Tam giác ADK có: M là trung điểm của AK và OM song song với DK(cmt)
Vì thế O là trung điểm của AD.
b, OM là đường trung bình của tam giác ADK suy ra: OM=1/2 DK (1)
TỪ (1) và (2) suy ra: OM=1/4 BM
Chúc bạn học tốt.