Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, O B M ^ = O E M ^ = 90 0
=> Tứ giác OEBM nội tiếp
b, Chứng minh được: ∆ABM:∆BDM (g.g) => M B 2 = M A . M B
c, DOBC cân tại O có OM vừa là trung trực vừa là phân giác
=> M O C ^ = 1 2 B O C ^ = 1 2 s đ B C ⏜
Mà B F C ^ = 1 2 B C ⏜ => M O C ^ = B F C ^
d, O E M ^ = O C M ^ = 90 0 => Tứ giác EOCM nội tiếp
=> M E C ^ = M O C ^ = B F C ^ mà 2 góc ở vị trí đồng vị => FB//AM
Do BM là tiếp tuyến của đường tròn nên \widehat{OBM}=90^o
o
Xét đường tròn (O) có AD là một dây cung. Lại có E là trung điểm AD nên theo tính chất của đường kính và dây cung, ta có OE\perp ADOE⊥AD hay \widehat{OEM}=90^oOEM=90o.
Xét tứ giác OEBM có \widehat{OBM}=\widehat{OEM}=90^oOBM=OEM=90o, chúng lại là hai góc kề nhau nên OEBM là tứ giác nội tiếp.
Cho tam giác ABCABC có ba góc nhọn nội tiếp đường tròn tâm OO (AB < AC)(AB<AC). Hai tiếp tuyến tại BB và CC cắt nhau tại MM. AMAM cắt đường tròn (O)(O) tại điểm thứ hai DD. Gọi EE là trung điểm đoạn ADAD. Chứng minh OEBMOEBM là tứ giác nội tiếp.
theo bai ta co E là trung điểm đoạn ADAD
ma AD la mot day cung thuoc (O)
=> OE vuong goc voi AD
hay goc OEM = 90 (1)
Mat khac, BM vuong goc voi OB tai B (gt)
hay goc OBM= 90 (2)
Tu (1) va (2) suy ra tu giac OEBM noi tiep
Đường tròn c: Đường tròn qua B_1 với tâm O Đường thẳng q: Tiếp tuyến của c qua A Đường thẳng q: Tiếp tuyến của c qua A Đoạn thẳng h: Đoạn thẳng [A, E] Đoạn thẳng i: Đoạn thẳng [B, E] Đoạn thẳng j: Đoạn thẳng [C, E] Đoạn thẳng k: Đoạn thẳng [O, C] Đoạn thẳng l: Đoạn thẳng [O, B] Đoạn thẳng m: Đoạn thẳng [A, B] Đoạn thẳng n: Đoạn thẳng [A, C] Đoạn thẳng p: Đoạn thẳng [B, D] Đoạn thẳng a: Đoạn thẳng [B, P] Đoạn thẳng b: Đoạn thẳng [C, Q] Đoạn thẳng d: Đoạn thẳng [P, Q] Đoạn thẳng g_1: Đoạn thẳng [B, C] Đoạn thẳng i_1: Đoạn thẳng [M, A] Đoạn thẳng k_1: Đoạn thẳng [O, M] O = (-0.28, -0.29) O = (-0.28, -0.29) O = (-0.28, -0.29) Điểm B: Điểm trên c Điểm B: Điểm trên c Điểm B: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm E: Giao điểm của f, g Điểm E: Giao điểm của f, g Điểm E: Giao điểm của f, g Điểm D: Giao điểm của c, h Điểm D: Giao điểm của c, h Điểm D: Giao điểm của c, h Điểm P: Giao điểm của r, s Điểm P: Giao điểm của r, s Điểm P: Giao điểm của r, s Điểm Q: Giao điểm của r, t Điểm Q: Giao điểm của r, t Điểm Q: Giao điểm của r, t Điểm M: Trung điểm của g_1 Điểm M: Trung điểm của g_1 Điểm M: Trung điểm của g_1 Điểm F: Giao điểm của e, d Điểm F: Giao điểm của e, d Điểm F: Giao điểm của e, d
a. Ta thấy ngay tứ giác OBEC có hai góc vuông đối nhau nên nó là tứ giác nội tiếp.
b. Câu này cô thấy cần sửa đề thành AB.AP = AD.AE mới đúng.
Gọi Aq là tiếp tuyến tại A của đường tròn (O). Khi đó ta có: \(\widehat{APE}=\widehat{BAq}\) (so le trong)
Mà \(\widehat{BAq}=\widehat{BDA}\) (Cùng chắn cung BA) nên \(\widehat{APE}=\widehat{BDA}\)
Vậy thì \(\Delta ABD\sim\Delta AEP\left(g-g\right)\Rightarrow\frac{AB}{AE}=\frac{AD}{AP}\Rightarrow AB.AP=AE.AD\)
c. +) Ta thấy \(\Delta BDE\sim\Delta ABE\left(g-g\right)\Rightarrow\frac{BD}{AB}=\frac{BE}{AE}\)
Tương tự \(\Delta CDE\sim\Delta ACE\left(g-g\right)\Rightarrow\frac{CD}{AC}=\frac{DE}{AE}\)
Mà BE = CE nên \(\frac{BD}{AB}=\frac{CD}{AC}\)
Lại có \(\Delta ABD\sim\Delta AEP\left(g-g\right)\Rightarrow\frac{BD}{EP}=\frac{AB}{AE}\Rightarrow EP=\frac{BD.AE}{AB}\)
Tương tự \(\Delta ACD\sim\Delta AEQ\left(g-g\right)\Rightarrow\frac{AC}{AE}=\frac{CD}{EQ}\Rightarrow EQ=\frac{CD.AE}{AC}=\frac{BD.AE}{AB}=EP\)
Vậy EP = EQ.
+) Ta thấy ngay \(\Delta ABC\sim\Delta AQP\Rightarrow\frac{BC}{QP}=\frac{AC}{AP}\Rightarrow\frac{BC:2}{QP:2}=\frac{AC}{QP}\)
\(\Rightarrow\frac{MC}{PE}=\frac{AC}{AP}\)
Lại có \(\widehat{ACM}=\widehat{APE}\) (Cùng bằng \(\widehat{BDA}\))
Từ đó suy ra \(\Delta AMC\sim\Delta AEP\Rightarrow\widehat{MAC}=\widehat{PAE}\)
d. Ta có BD.AC = AB.CD
Lại có do ABCD là tứ giác nội tiếp nên
AD.BC = AB.CD + AC.BD = 2AB.CD (Định lý Ptoleme) \(\Rightarrow2MC.AD=2AB.CD\Rightarrow MC.AD=AB.CD\)
\(\Rightarrow\frac{MC}{AB}=\frac{CD}{AD}\)
Lại thấy \(\widehat{BAD}=\widehat{BCD}\Rightarrow\Delta BAD\sim\Delta MCD\left(c-g-c\right)\)
Mà \(\Delta BAD\sim\Delta MAC\Rightarrow\Delta MCD\sim\Delta MAC\)
\(\Rightarrow\frac{MC}{MA}=\frac{MD}{MC}\Rightarrow MA.MD=MC^2=\frac{BC^2}{4}.\)
Có thể giải gúp tôi được không /
Con mua 17 kg cam , mẹ mua gấp 3 lần số cam của con . Hỏi cả hai mẹ con mua được bao nhiêu kg cam ?
a,Xét đường tròn (O) có:
MB là tiếp tuyến của đường tròn (gt) => \(\widehat{OBM}=90^0\)
Mặt khác E là trung điểm của AD (gt) => \(OE\perp AD\) => \(\widehat{OEM}=90^0\) => \(\widehat{OBM}=\widehat{OEM}\)
Xét tứ giác OEBM có: \(\widehat{OBM}=\widehat{OEM}\) (cmt)
=> OEBM là tứ giác nội tiếp
b, Xét đường tròn (O), tiếp tuyến MB, dây cung BD có:
\(\widehat{MBD}\) là góc tạo bởi tiếp tuyến và dây cung và \(\widehat{MAB}\) là góc nội tiếp cùng chắn cung BD => \(\widehat{MBD}=\widehat{MAB}\)
Xét \(\Delta MBD\) và \(\Delta MAB\) có:
\(\widehat{MBD}=\widehat{MAB}\) (cmt)
\(\widehat{M}\) là góc chung
=> \(\Delta MBD\) ~ \(\Delta MAB\left(g.g\right)\)
=> \(\dfrac{MB}{MA}=\dfrac{MD}{MB}\) => \(MB^2=MA.MD\)
c, Gọi giao điểm của OM với (O) là I
Xét đường tròn (O), tiếp tuyến MA, MB có: MA cắt MB tại M
=> \(\widehat{IOB}=\widehat{IOC}=\dfrac{1}{2}\widehat{BOC}\) (t/c của 2 tiếp tuyến cắt nhau)
=> cung IB = cung IC
Mặt khác \(\widehat{BOC}\) là góc ở tâm và \(\widehat{BAC}\) là góc nội tiếp cùng chắn cung BC => \(\widehat{BAC}=\dfrac{1}{2}\widehat{BOC}\)
=> \(\widehat{BAC}=\widehat{IOC}\). Hay \(\widehat{BAC}=\widehat{MOC}\)
Ta có: \(\widehat{BAC}\) và \(\widehat{BFC}\) là các góc nội tiếp cùng chắn cung BC
=> \(\widehat{BAC}=\widehat{BFC}\)
=> \(\widehat{BFC}=\widehat{MOC}\)
d, Gọi giao điểm của OE và DF là K
Ta có: \(\widehat{OEM}=90^0\left(cmt\right)\) => \(KE\perp AD\)
Xét \(\Delta AKD\) có:
E là trung điểm của KD (gt)
\(KE\perp AD\left(gt\right)\)
=> \(\Delta AKD\) cân tại K => \(\widehat{KAD}=\widehat{KDA}\). Hay \(\widehat{BAD}=\widehat{FDA}\)
Xét đường tròn (O) có: \(\widehat{BAD}\) và \(\widehat{BFD}\) là các góc nội tiếp cùng chắn cung BD => \(\widehat{BAD}=\widehat{BFD}\)
=> \(\widehat{BFD}=\widehat{FDA}\)
Mà 2 góc này ở vị trí so le trong => BF // AD. Hay BF // AM
cảm ơn nhiều ạ