K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

\(\widehat{BAE}\) chung

Do đó: ΔAEB\(\sim\)ΔAFC(g-g)

b) Ta có: ΔAEB\(\sim\)ΔAFC(cmt)

nên \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

Xét ΔAEF và ΔABC có

\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)

\(\widehat{FAE}\) chung

Do đó: ΔAEF\(\sim\)ΔABC(c-g-c)

10 tháng 7 2021

bạn có thể làm giúp mình câu c,d đc ko?

a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có 

\(\widehat{BAE}\) chung

Do đó: ΔAEB\(\sim\)ΔAFC(g-g)

b) Ta có: ΔAEB\(\sim\)ΔAFC(cmt)

nên \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

Xét ΔAEF và ΔABC có 

\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)

\(\widehat{BAC}\) chung

Do đó: ΔAEF\(\sim\)ΔABC(c-g-c)

9 tháng 7 2021

vậy còn câu c và d.

13 tháng 5 2015

c) xét tam giác CFA và tam giác CEH có

C chung

F=E=90 độ

vậy tam giác CFA~CEH(g.g)

\(\Rightarrow\frac{CF}{CE}=\frac{CA}{CH}\Rightarrow\frac{CF}{CA}=\frac{CE}{CH}\).

xét tam giác CFE và CAH có

   C chung

\(\frac{CF}{CA}=\frac{CE}{CH}\left(cmt\right)\)

vậy chúng đồng dạng với nhau. 

suy ra góc CFE=CAH(góc tương ứng)

     mà       DFH=CAH( do tam giác FHD~AHC)

từ hai điều đó suy ra CFE=DFH

hay CFE=CFD

vậy FC là tia phân giác góc DFE( điều phải chứng minh)

xog rồi bạn

14 tháng 5 2015

Cám ơn nhiều ạ Tuân Huỳnh Ngọc MInh ^_^

a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

góc A chung

=>ΔAEB đồng dạng với ΔAFC

=>AE/AF=AB/AC

=>AE*AC=AB*AF và AE/AB=AF/AC

b: Xét ΔAEF và ΔABC có

AE/AB=AF/AC

góc A chung

=>ΔAEF đồng dạng với ΔABC

b) Xét tứ giác BFHD có 

\(\widehat{BFH}+\widehat{BDH}=180^0\)

nên BFHD là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Suy ra: \(\widehat{FBH}=\widehat{FDH}\)(hai góc nội tiếp cùng chắn cung FH)

hay \(\widehat{ABE}=\widehat{FDH}\)(1)

Xét tứ giác CDHE có 

\(\widehat{CDH}+\widehat{CEH}=180^0\)

nên CDHE là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Suy ra: \(\widehat{HDE}=\widehat{ECH}\)(Hai góc nội tiếp cùng chắn cung EH)

hay \(\widehat{HDE}=\widehat{ACF}\)(2)

Xét ΔABE vuông tại E và ΔACF vuông tại F có 

\(\widehat{FAC}\) chung

Do đó: ΔABE\(\sim\)ΔACF(g-g)
Suy ra: \(\widehat{ABE}=\widehat{ACF}\)(3)

Từ (1), (2) và (3) suy ra \(\widehat{FDH}=\widehat{EDH}\)

hay DH là tia phân giác của \(\widehat{EDF}\)