Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong 1 tam giác, 3 đường phân giác cắt nhau tại 1 điểm và điểm đó cách đều 3 cạnh của tam giác (điểm này gọi là tâm đường tròn nộ tiếp). Nối E -> F; E -> D ; D -> F. Ta sẽ chứng minh H là giao điểm 3 đường phân giác.
Ta chứng minh được ∆AFC ~ ∆AEB(g.g) => AF/AE = AC/AB => AF/AC = AE/AB. => ta chứng minh được ∆AEF ~ ∆ABC(c.g.c) => góc AEF = góc ABC, chứng minh tương tư ta được ∆CED ~ ∆CBA => góc CED = góc ABC => góc AEF = góc CED ( = góc ABC), ta có: góc FEB = 90º - góc AEF và góc BED = 90º - góc CED, mà góc AEF = góc CED => góc FEB = góc BED => BE là phân giác góc FED => EH là phân giác góc FED, chứng minh tương tự ta được DH là phân giác góc EDF và FH là phân giác góc EFD
=> đpcm
bạn chứng minh rõ DH là tia phân giác cho mình đc k, k rõ cho lắm
a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{BAC}\) chung
Do đó: ΔAEB\(\sim\)ΔAFC(g-g)
Suy ra: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
Xét ΔAEF và ΔABC có
\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)
\(\widehat{EAF}\) chung
Do đó: ΔAEF\(\sim\)ΔABC(c-g-c)
Mình chỉ biết làm mỗi câu d thôi bạn thông cảm nhé !!!
d) Vì BE vuông AC, CF vuông AB(gt)
Mà BE, CF cắt nhau tại H
=> H là trực tâm của tam giác ABC
Ta có Sbhc/Sabc = 1/2 x HD xBC/1/2 x AD x BC = HD/AD (1)
Ta có Sahc/Sabc = 1/2 x HE x AC/1/2 x BE x AC = HE/BE (2)
Ta có Sabh/Sabc = 1/2 x HF x AB/1/2 x CF x AB = HF/CF (3)
Từ (1), (2), (3) => HD/AD + HE/BE + HF/CF = Sbhc/Sabc + Sahc/Sabc + Sabh/Sabc
=> HD/AD + HE/BE + HF/CF = Sabc/Sabc
=> HD/AD + HE/BE + HF/CF = 1 (Đpcm)
câu c nè
Chứng minh tgCEB đồng dạng vs tgCDA (g.g)=>gócEBC= gócDAC
Do đó : tg ADC đồng dạng với tam giác BDH=>AD/BD=DC/DH
=>BD/DH=AD/DC=>BD/DH=3/4(AD PYTAGO vào tg vuông ADC ta tính được DC=4)
vậy\(\frac{BD}{DH}=\frac{3}{4}\)
1: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
góc EAB chung
=>ΔAEB đồng dạng với ΔAFC
=>AE/AF=AB/AC
=>AE*AC=AB*AF và AE/AB=AF/AC
2: Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc FAE chung
=>ΔAEF đồng dạng vơi ΔABC
3: Xét ΔHFB vuông tại F và ΔHEC vuông tại E có
góc FHB=góc EHC
=>ΔHFB đồng dạng với ΔHEC
=>HF/HE=HB/HC
=>HF/HB=HE/HC
Xét ΔHFE và ΔHBC có
HF/HB=HE/HC
góc FHE=góc BHC
=>ΔFHE đồng dạng với ΔBHC