\(\frac{HA}{AA'}-\frac{HB}{BB'}-\frac{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2019

Ban vao trang Đề thi HSG Toán 8 cấp huyện năm 2016-2017 Phòng GD&ĐT Củ Chi

9 tháng 3 2021

A B C C' A' B' H

1 tháng 3 2020

A B C A' B' C' Hình vẽ chỉ mang tính chất minh họa

Ta có : \(\frac{AH}{AA'}=\frac{S_{ABH}}{S_{ABA'}}=\frac{S_{ACH}}{S_{ACA'}}=\frac{S_{ABH}+S_{ACH}}{S_{ABC}}\)   ( Tính chất dãy tỉ số bằng nhau, tỉ số diện tích )

Tương tự ta có :

\(\frac{BH}{BB'}=\frac{S_{AHB}+S_{BHC}}{S_{ABC}}\) , \(\frac{CH}{CC'}=\frac{S_{ACH}+S_{BHC}}{S_{SBC}}\)

Do đó :

\(\frac{AH}{AA'}+\frac{BH}{BB'}+\frac{CH}{CC'}=\frac{2\left(S_{ABH}+S_{AHC}+S_{BHC}\right)}{S_{ABC}}=\frac{2\cdot S_{ABC}}{S_{ABC}}=2\)

Vậy : \(\frac{AH}{AA'}+\frac{BH}{BB'}+\frac{CH}{CC'}=2\)