Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: EG\(\perp\)AC
BD\(\perp\)AC
Do đó: EG//BD
Xét ΔABD có EG//BD
nên \(\dfrac{AE}{AB}=\dfrac{AG}{AD}\)
=>\(AE\cdot AD=AB\cdot AG\)(1)
Ta có: DF\(\perp\)AB
CE\(\perp\)AB
Do đó: DF//CE
Xét ΔAEC có DF//CE
nên \(\dfrac{AD}{AC}=\dfrac{AF}{AE}\)
=>\(AD\cdot AE=AC\cdot AF\)(2)
Từ (1) và (2) suy ra \(AE\cdot AD=AB\cdot AG=AC\cdot AF\)
b: AB*AG=AC*AF
=>\(\dfrac{AG}{AC}=\dfrac{AF}{AB}\)
Xét ΔABC có \(\dfrac{AG}{AC}=\dfrac{AF}{AB}\)
nên FG//BC
Bài 1 bạn tự làm nhé
Bài 2 :
A A A B B B F F F C C C D D D E E E
Xét \(\Delta\)ADE vuông tại E :
AE < AD (1)
Xét \(\Delta\)CDF vuông tại F
CF < CD (2)
Từ (1) và (2) => AE + CF < AD + CD = AC
Bài 3 :
C C C B B B A A A N N N M M M H H H
Ta có : \(BM=BC\)=> \(\Delta\)BMC cân ở C nên \(\widehat{MCB}=\widehat{CMB}\)
Ta lại có : \(\widehat{BCM}+\widehat{MCA}=90^0,\widehat{CMH}+\widehat{MCH}=90^0\)
=> \(\widehat{MCH}=\widehat{MCN}\)
Xét \(\Delta\)MHC và \(\Delta\)MNC có :
MC chung
HC = NC(gt)
\(\widehat{MCH}=\widehat{MCN}\)(cmt)
=> \(\Delta\)MHC = \(\Delta\)MNC(c.g.c)
Do đó \(\widehat{MNC}=\widehat{MHC}=90^0\)
hay MN \(\perp\)AC
Ta có : BM = BC,CH = CN và AM > AN
Do đó BM + MA + CH > BC + CN + NA hay AB + CH > BC + CA