Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔNPC có I,K lần lượt là trung điểm của NP,NC
=>IKlà đường trung bình của ΔNPC
=>IK//PC và IK=PC/2
IK//PC
\(J\in PC\)
Do đó: IK//JP
IK=PC/2
PC=PB
\(JP=\dfrac{BP}{2}\)
Do đó: IK=JP
Xét tứ giác IKPJ có
IK//PJ
IK=PJ
Do đó: IKPJ là hình bình hành
b: Xét ΔACN có
K,Q lần lượt là trung điểm của CN,CA
=>KQ là đường trung bình của ΔACN
=>KQ//AN và \(KQ=\dfrac{AN}{2}\)
Xét ΔPNB có
I,J lần lượt là trung điểm của PN,PB
=>IJ là đường trung bình của ΔPNB
=>IJ//NB và \(JI=\dfrac{NB}{2}\)
JI//NB
KQ//AN
A,N,B thẳng hàng
Do đó: JI//KQ
\(JI=\dfrac{BN}{2}\)
\(KQ=\dfrac{AN}{2}\)
mà BN=AN
nên JI=KQ
Xét tứ giác QKJI có
QK//JI
QK=JI
Do đó: QKJI là hình bình hành
c: KQ//AN
N\(\in\)AB
Do đó: KQ//AB
KP//AB
KQ//AB
KQ,KP có điểm chung là K
Do đó: Q,K,P thẳng hàng
\(QK=\dfrac{AN}{2}\)
\(PK=\dfrac{BN}{2}\)
mà AN=BN
nên QK=PK
mà Q,K,P thẳng hàng
nên K là trung điểm của PQ
IJ là đường trung bình tam giác BPN nên \(IJ//BN;IJ=\dfrac{1}{2}BN=\dfrac{1}{2}AN\left(GT\right)\left(1\right)\)
QK là đường trung bình tam giác ANC nên
\(QK//AN.hay.QK//BN;QK=\dfrac{1}{2}AN\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow QK//IJ;QK=IJ\Rightarrow IJKQ.là.hình.bình.hành\)
Mình không biết vẽ hình trên đây nên bạn thông cảm nhé
Xét tam giác CAN có: Q là trung điểm của AC
K là trung điểm của NC
=>QK là đường trung bình của tam giác CAN
=> \(\hept{\begin{cases}QK=\frac{1}{2}AN\\QKsongsongAN\end{cases}}\)(1)
Xét tam giác PBN có: J là trung điểm của BP
I là trung điểm của NP
=> IJ là đường trung bình của tam giác PBN
=>\(\hept{\begin{cases}IJ=\frac{1}{2}BN\\IJsongsongBN\end{cases}}\)(2)
mà AN=BN(N là trung điểm của AB)(3)
=>\(\hept{\begin{cases}QK=IJ\\QKsongsongIJ\end{cases}}\)
Xét tứ giác IJKQ có:
\(\hept{\begin{cases}QK=IJ\\QKsongsong\:IJ\end{cases}}\)
=> IJQK là hình bình hành