Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)nối AM lại ta có đường trung tuyến AM
mà AM=1/2.BC =>\(\Delta ABC\perp\)tại A=>góc A=90o
Còn câu b,c bạn tự làm nha chế mình ko bt kaka
a) Trên tia đối của MA lấy D sao cho MA=MD
Xét tam giác MAC và tam giác MDB :
AM=DM
Góc AMC = Góc BMD
CM=BM
=> Tam giác MAC = tam giác MDB ( c.g.c)
=> AB=BD
Góc ACM= Góc MBD (2 góc tương ứng ) , mà đây là 2 góc so le trong nên AC//BD
Do đó góc CAB + góc DAB=180 độ ( trong cùng phía )
Mà góc CAB = 90 độ nên góc DAB=90 độ
Xét tam giác DAB = tam giác CAB ( c.g.c) và có AD = BC
Mà AD=2MA nên MA=1/2BC
Nếu MA = 1/2BC thì :
Tam giác MAB cân tại M do MA = MB = 1/2BC
Do đó góc MAB = góc CBA
Tam giác MAC cân tại M do MA = MC = 1/2 BC
Do đó góc MAC = góc BCA
=> Góc MAB + góc MAC = góc CBA + góc BCA
=> Góc CAB = Góc CBA + góc BCA
Mà tổng 3 góc này là 180 độ nên góc CAB = 90 độ
a) A C B D M
+ Trên tia đối MA lấy D sao cho M là trung điểm của AD
=> AM = 1/2 AD (1)
và AM = MD (t/c)
+Xét ∆AMB, ∆AMC có :
AM chung
^AMB = ^AMC (đối đỉnh)
MB = MC ( M là tđ BC)
Do đó : ∆AMB = ∆AMC (c-g-c)
=> AB = AC (2 cạnh tương ứng)
+Xét ∆ABM , ∆CDM có :
BM = MC ( M là trung điểm BC)
^BMA = ^DMC ( đối đỉnh)
AM = AD (cmt)
Do đó : ∆ABM = ∆DCM (c-g-c)
=> AB = DC ( cạnh t/ư)
và ^B = ^MCD (góc t/ư)
Mà 2 góc này ở vị trí so le trong
=> AB // DC
=> ^BAC + ^ACD = 180o (trong cùng phía)
Mà ^BAC = 90o => ^ACD = 90o
=> ^BAC = ^ACD
+Xét ∆ABC, ∆CDA có :
AB = DC (cmt)
^BAC = ^ACD (cmt)
AC chung
Do đó : ∆ABC = ∆CDA (c-g-c)
=> BC = DA ( cạnh tương ứng)(2)
Từ (1)(2)=> AM = 1/2 BC
B C A M 1 2 1 2
+Ta có : M là trung điểm BC (gt)
=> BM = MC
Mà AM = 1/2BC => AM = BM = MC
+△ABM có : AM = BM (cmt)
=> △ABM cân tại M
=> ^A1 = ^B1 (góc ở đáy) (1)
+△ACM có : AM = MC (cmt)
=> △ACM cân tại M
=>^A2 = ^C2 ( góc ở đáy)(2)
Từ(1)(2) => ^A1 + ^A2 = B1 + ^C2
=> ^BAC = ^B1 + ^C2
mà ^BAC + (^B1 + ^C2) = 180o (đlý tổng ba góc)
=> ^BAC = 180o/2 = 90o
Vậy
a) Ke AD sao cho goc DAB =goc ACD => goc DAB =goc BAD ( cung phu voi DAC)
=> tam giac ABD can tai D => AD=BD
=>Tam giac ADC can tai D => AD=DC
=>DB=DC=DA => D trung voi M
=> AM =BC/2
b) Nguoc lai :
Neu AM =BC/2 => AM =MB =MC
=> ABM can tai M ; ACM can tai M
=> BAM + CAM = (180- AMB)/2 +(180-AMC)/2 = (360 -(AMB+AMC))/2 =(360-180)/2=180/2=90
=>BAC=90
=> A=90