Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét tứ giác ABFC có
E là trung điểm của AF
E là trung điểm của BC
Do đó: ABFC là hình bình hành
Suy ra: CF//AB
b: Xét tứ giác ABFC có
E là trung điểm của BC
E là trung điểm của FA
Do đó: ABFC là hình bình hành
Suy ra: CF//AB
a: Xét ΔMAC và ΔMDB có
MA=MD
\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)
MC=MB
Do đó: ΔMAC=ΔMDB
b: Xét ΔMEB và ΔMFC có
ME=MF
\(\widehat{BME}=\widehat{CMF}\)(hai góc đối đỉnh)
MB=MC
Do đó: ΔMEB=ΔMFC
=>\(\widehat{MEB}=\widehat{MFC}\)
=>\(\widehat{MFC}=90^0\)
=>CF\(\perp\)AD
c: Xét tứ giác BFCE có
M là trung điểm chung của BC và FE
=>BFCE là hình bình hành
=>BF//CE và BF=CE
Ta có: BF//CE
B\(\in\)FG
Do đó: BG//CE
Ta có: BF=CE
BF=BG
Do đó: BG=CE
Xét tứ giác BGEC có
BG//EC
BG=EC
Do đó: BGEC là hình bình hành
=>BE cắt GC tại trung điểm của mỗi đường
mà H là trung điểm của BE
nên H là trung điểm của GC
=>G,H,C thẳng hàng
Hình
A B C M N E F
mk nghĩ đề bài bn vt nhầm rồi đáng lẽ ra là Trên tia đối của tia NB lấy điểm F chứ ! xem lại đề ha
mk vẽ hình rồi tự thực hiện phần sau :3
hc tốt
Xét ΔAME và ΔCFE có
EA=EC
\(\widehat{AEM}=\widehat{CEF}\)
EM=EF
Do đó: ΔAME=ΔCFE