Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC
hay BMNC là hình thang
b: Xét ΔABK có MI//BK
nên MI/BK=AM/AB=1/2(1)
XétΔACK có NI//CK
nên NI/CK=AN/AC=1/2(2)
Từ (1)và (2) suy ra MI/BK=NI/CK
mà MI=NI
nên BK=CK
hay K là trug điểm của BC
Xét ΔABC có
K là trung điểm của BC
M là trung điểm của AB
Do đó: KM là đường trung bình
=>KM//AN và KM=AN
hay AMKN là hình bình hành
https://lazi.vn/edu/exercise/cho-tam-giac-abc-goi-d-e-f-theo-thu-tu-la-trung-diem-cua-ab-bc-ca-goi-m-n-p-q-theo-thu-tu-la-trung-diem
Bạn xem tại link này nhé
Học tốt!!!!!!
a) ta có góc DMA=MAN=DAN=900
=> tứ giác AMDN là hình chữ nhật
b) ta có DB=DC VÀ DN // MA ( do MDNA là hình chữ nhật )
=> DN là đường trung bình của tam giác ABC
--> AN=NC hay N là trung điểm của AC
c) ta có tứ giác ADCE có 2 đường chéo cắt nhau tại trung điểm của mỗi đường nên là hình bình hành. Hình bình hành ADCE có 2 đường chéo vuông góc với nhau nên là hình thoi
d)
a)Xét tứ giác AMDN ,có:
góc MAN=90(ΔABC vuông tại A)
góc AMD=90(DM⊥AB)
góc AND=90(DN⊥AC)
⇒Tứ giác AMDN là hình vuông
b)Xét △ABC vuông tại A,có:
AD là đường trung tuyến ứng vs cạnh huyền BC
⇒AD=1/2 BC hay AD=DC
Xét △ADC có:
AD=DC(cmt)
⇒△ADC là tam giác cân tại D
Xét △ADC cân tại D,có:
AN là đường cao (DN⊥AC)
⇒N là trung điểm AC
c)Xét tứ giác ADCE,có:
N là trung điểm DE
N là trung điểm AC
mà DE và AC là 2 đg chéo cắt nhau tại N
⇒tứ giác ADCE là hình bình hành
Xét hbh ADCE ,có:
ND⊥AC
⇒hbh ADCE là hình thoi
Xét hình chữ nhật AMDN ,có:
DN=AN hay DN=AN=NE=NC hay DE=AC
Xét hình thoi ADCE có :
DE=AC
mà DE và AC là 2 đg chéo
⇒ADCE là hình vuông
d)Giả sử tứ giác ABCE là hình thang cân
⇔góc B=góc C
⇔△ABC là tam giác vuông cân tại A
Vậy để tứ giác ABCE là hình thang cân thì △ABC là tam giác vông cân tại A
a)Xét tứ giác AMDN ,có:
góc MAN=90(ΔABC vuông tại A)
góc AMD=90(DM⊥AB)
góc AND=90(DN⊥AC)
⇒Tứ giác AMDN là hình vuông
b)Xét △ABC vuông tại A,có:
AD là đường trung tuyến ứng vs cạnh huyền BC
⇒AD=1/2 BC hay AD=DC
Xét △ADC có:
AD=DC(cmt)
⇒△ADC là tam giác cân tại D
Xét △ADC cân tại D,có:
AN là đường cao (DN⊥AC)
⇒N là trung điểm AC
c)Xét tứ giác ADCE,có:
N là trung điểm DE
N là trung điểm AC
mà DE và AC là 2 đg chéo cắt nhau tại N
⇒tứ giác ADCE là hình bình hành
Xét hbh ADCE ,có:
ND⊥AC
⇒hbh ADCE là hình thoi
Xét hình chữ nhật AMDN ,có:
DN=AN hay DN=AN=NE=NC hay DE=AC
Xét hình thoi ADCE có :
DE=AC
mà DE và AC là 2 đg chéo
⇒ADCE là hình vuông
d)Giả sử tứ giác ABCE là hình thang cân
⇔góc B=góc C
⇔△ABC là tam giác vuông cân tại A
Vậy để tứ giác ABCE là hình thang cân thì △ABC là tam giác vông cân tại A
a)Xét tứ giác AMDN có: góc AMD=900
góc MAN=900
góc DNA=900
=> Tứ giác AMDN là hình chữ nhật(dhnb hcn)
b)Xét tam giác ABC vuông tại A có:D là trung điểm của BC
=>AD là đường trung tuyến ứng với cạnh huyền BC
=>AD=BD=CD=BC/2
=> tg ACD cân tại D
Xét tg ACD cân tại D có: DN là đường cao
=>DN là đường trung tuyến của tam giác ADC
=>N là trung điểm của AC
a) ADME là hình chữ nhật vì có 3 góc vuông: \(\widehat{A}\)= \(\widehat{D}\)= \(\widehat{E}\)= 900
b) Để ADME là hình vuông thì AM là phân giác \(\widehat{A}\)
Vậy M là giao đường phân giác góc A với BC thì ADME là hình vuông