K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2023

Tham khảo:

a) Xét tam giác BGM và tam giác CEM có :

\(\widehat {GMB} = \widehat {EMC}\)(2 góc đối đỉnh)

GM = ME (do G đối xứng E qua M)

MB = MC (do M là trung điểm của BC)

\( \Rightarrow \Delta BGM = \Delta CEM(c - g - c)\)

\( \Rightarrow \widehat {GBM} = \widehat {MCE}\)(2 góc tương ứng bằng nhau)

Mà 2 góc trên ở vị trí so le trong nên BG⫽CE

b) Vì I là trung điểm BE nên AI sẽ là trung tuyến của tam giác ABE

Và BG cũng là trung tuyến của tam giác ABE do G là trung điểm AE

Vì BG cắt AI tại F nên F sẽ là trọng tâm của tam giác ABE

\(\, \Rightarrow AF = \dfrac{2}{3}AI\)(định lí về trọng tâm tam giác)

Mà AI = AF + FI \( \Rightarrow \) FI = AI – AF

\( \Rightarrow FI = AI - \dfrac{2}{3}AI = \dfrac{1}{3}AI\)

\( \Rightarrow 2FI = AF = \dfrac{2}{3}AI\)

\( \Rightarrow \) AF = 2 FI

a: Xet ΔBMG và ΔCME có

MB=MC

góc BMG=góc CME

MG=ME

=>ΔBMG=ΔCME
b: Xet tứ giác BGCE co

M là trung điểm chung của BC và GE

=>BGCE là hình bình hành

=>BG//CE

c: Xét ΔABE co

AI,BG là trung tuyến

AI cắt BG tại F

=>F là trọng tâm

=>E,F,N thẳng hàng

1 tháng 7 2020

Ko  có hình làm sao bạn

1 tháng 7 2020

A B C G N M N K

a. Xét tam giác ABM và tam giác ACN có 

               góc A chung

              AB = AC [ vì tam giác ABC cân ]

             AM = AN [ \(AM=AN=\frac{AB}{2}=\frac{AC}{2}\)]

Do đó ; tam giác ABM = tam giác ACN [ c.g.c ]

b.Xét tam giác ANG và tam giác BNK có 

              NG = NK

             góc ANG = góc BNK [ đối đỉnh ]

            AN = BN [ vì N là tđ' của AB ]

Do đó ; tam giác ANG = tam giác BNK [ c.g.c ]

\(\Rightarrow\)góc AGN = góc BKN [ ở vị trí so le trong ]

\(\Rightarrow\)AG // BK 

a: Xét ΔMBA và ΔMCE có

MB=MC

góc BMA=góc CME

MA=ME

=>ΔMBA=ΔMCE

b: Xét tứ giác ABEC có

M là trung điểm chung của AE và BC

=>ABEC là hình bình hành

=>BE//AC

17 tháng 4 2016

A B C M D G N

Xet tam giac ABC ta có

G la trong tâm (gt)

->BG la dương trung tuyến 

mà BG cắt AC tai N (gt)

nên BN là đường trung tuyến

--> N la trung điểm AC

Xét tam giac ANG và tam giac NCD ta có 

ND=NG (gt) ; goc ANG=goc CND (đối đỉnh) ; AN=NC ( N là trung điểm AC)

--< tam giac ANG=tam giac CND (c-g-c)

--> AG=CD ( 2 cạnh tương ứng)

ta có : G là trọng tâm tam giac ABC (gt)

        -> AG=\(\frac{2}{3}AM\)-> \(\frac{AG}{2}=\frac{AM}{3}=\frac{AM-AG}{3-2}=\frac{MG}{1}\)

--> AG=2MG

ma AG -=CD 9cmt)

nên CD=2MG

          

1: Xét ΔBMG và ΔCMD có

BM=CM(AM là đường trung tuyến ứng với cạnh BC của ΔABC)

\(\widehat{BMG}=\widehat{CMD}\)(hai góc đối đỉnh)

GM=DM(M là trung điểm của GD)

Do đó: ΔBMG=ΔCMD(c-g-c)

\(\widehat{GBM}=\widehat{DCM}\)(hai góc tương ứng)

\(\widehat{GBM}\)\(\widehat{DCM}\) là hai góc ở vị trí so le trong

nên BG//DC(dấu hiệu nhận biết hai đường thẳng song song)

2: Xét ΔABC có

AM là đường trung tuyến ứng với cạnh BC(gt)

BN là đường trung tuyến ứng với cạnh AC(gt)

AM\(\cap\)BN={G}

Do đó: G là trọng tâm của ΔABC(định lí ba đường trung tuyến của tam giác)

\(AG=\frac{2}{3}AM\)(tính chất)(1)

Ta có: AG+GM=AM(G nằm giữa A và M)

hay \(GM=AM-AG=AM-\frac{2}{3}AM=\frac{1}{3}AM\)

mà GD=2GM(M là trung điểm của GD)

nên \(GD=2\cdot\frac{1}{3}AM=\frac{2}{3}AM\)(2)

Từ (1) và (2) suy ra AG=GD

mà A,G,D thẳng hàng(A,G,M,D thẳng hàng)

nên G là trung điểm của AD

Xét ΔADC có

G là trung điểm của AD(cmt)

N là trung điểm của AC(BN là đường trung tuyến ứng với cạnh AC của ΔABC)

Do đó: GN là đường trung bình của ΔADC(định nghĩa đường trung bình của tam giác)

⇒GN//DC và \(GN=\frac{DC}{2}\)(định lí 2 về đường trung bình của tam giác)(3)

Ta có: G là trọng tâm của ΔABC(cmt)

\(GN=\frac{1}{3}BN\)(tính chất)(4)

Từ (3) và (4) suy ra \(\frac{DC}{2}=\frac{1}{3}BN\)

\(\frac{DC}{2}=\frac{BN}{3}\)

hay \(3\cdot CD=2\cdot BN\)(ddpcm)

Bài 5: Cho tam giác ABC, trung tuyến AM. Từ M kẻ đường thẳng song song với AB cắt AC tại N. Biết AN=MN; BN cắt AM ở O. Chứng minh:a) Tam giác ABC cân ở Ab) O là trọng tâm của tam giác ABCBài 6: Cho tam giác ABC vuông tại A, phân giác CD. Gọi H là hình chiếu của điểm B trên đường thẳng CD. Trên CD lấy điểm E sao cho H là trung điểm của DE. Gọi F là giao điểm của BH và CA. Chứng minh:a) Góc CEB= góc ADC và...
Đọc tiếp

Bài 5: Cho tam giác ABC, trung tuyến AM. Từ M kẻ đường thẳng song song với AB cắt AC tại N. Biết AN=MN; BN cắt AM ở O. Chứng minh:

a) Tam giác ABC cân ở A

b) O là trọng tâm của tam giác ABC


Bài 6: Cho tam giác ABC vuông tại A, phân giác CD. Gọi H là hình chiếu của điểm B trên đường thẳng CD. Trên CD lấy điểm E sao cho H là trung điểm của DE. Gọi F là giao điểm của BH và CA. Chứng minh:

a) Góc CEB= góc ADC và Góc EBH= góc ACD

b) BE vuông góc BC

C) DF song song BE


Bài 7: Cho tam giác ABC vuông tại A, có AC=12cm, BC-13cm. Gọi I là trung điểm của BC. Trên tia AI lấy điểm K sao cho IA=IK

a) Tính AB

b)Chứng minh rằng: Tam giác IAB= tam giác IKC, từ đó suy ra tam giác ACK là tam giác vuông

c) Gọi điểm M là trung điểm của AC.Chứng minh: MB=MK

d) MK cắt BC tại N,BM cắt AI tại E. Chứng minh: tam giác MEN cân;EN song song BK


Bài 8: Cho tam giác ABC vuông tại A, có AB= 8cm, BC= 17cm

a) Tính AC

b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh: Góc DBC= góc DCB

c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BEC vuông. Suy ra DF là phân giác của góc ADE

d) Chứng minh: BE vuông góc với FC

1
2 tháng 5 2016

dài thế bạn.

đọc xong  đề bài mình ngủ luôn