Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác AMN và tam giác BMC có
⎧⎩⎨⎪⎪MB=MANMAˆ=BMCˆMN=MC{MB=MANMA^=BMC^MN=MC(Vì M là trung điểm AB; MN=MC)
⇒⇒ tam giác AMN=tam giác BMC (c-g-c)
⇒NAMˆ=MBCˆ⇒NAM^=MBC^ (2 góc tương ứng)
⇒⇒ AN//BC (Vì 2 góc NAM và góc MBC là 2 góc so le trong)
a: Xét ΔMAN và ΔMBC có
MA=MB
góc AMN=góc BMC
MN=MC
Do đó: ΔMAN=ΔMBC
b: ΔMAN=ΔMBC
=>góc MAN=góc MBC
=>AN//BC
c: Xét ΔNAC và ΔCBN có
NA=CB
AC=BN
NC chung
Do đo: ΔNAC=ΔCBN
A B C M H 1 2
a.Xét tam giác AMH và tam giác BMC có:
MA=MB(M là trung điểm AB)
MH=MC(gt)
góc M1=góc M2( đối đỉnh)
=> tam giác AMH=tam giác BMC( gcg)
b. Ta có: MA=MB và MH=MC (gt)
=> BHAC là hính bính hành
=> AH // BC
c.Bn xem lại câu này nha ..IN đề k cho bn ơi
( p/S: hình vẽ k dc đẹp..bn thông cảm ^^)
A B C M H
a,Xét \(\Delta AMH\) và \(\Delta BMC\) có:
MA = MB (gt)
góc AMH = góc BMC (gt)
MH = MC (gt)
Do đó \(\Delta AMH=\Delta BMC\left(c.g.c\right)\)
b,Vì \(\Delta AMH=\Delta BMC\) (câu a) => góc AHM = góc BCM (2 góc tương ứng)
Mà góc AHM và góc BCM là cặp góc so le trong nên AH // BC
c, đề thiếu????
A B C N M
a) Xét hai tam giác AMN và BMC có:
AM = BM (gt)
\(\widehat{AMN}=\widehat{BMC}\) (đối đỉnh)
NM = CM (gt)
Vậy \(\Delta AMN=\Delta BMC\left(c-g-c\right)\).
b) Vì \(\Delta AMN=\Delta BMC\left(cmt\right)\)
\(\Rightarrow\widehat{ANM}=\widehat{BCM}\)
Mà hai góc này ở vị trí so le trong
Vậy AN // BC.
c) Xét hai tam giác NAC và CBN có:
AN = BC (\(\Delta AMN=\Delta BMC\))
\(\widehat{ANC}=\widehat{BCN}\) (cmt)
NC: cạnh chung
Vậy \(\Delta NAC=\Delta CBN\left(c-g-c\right)\).
Ta có hình vẽ:
K A B C M K I N
a) Vì M là trung điểm của AB nên AM = BM = \(\frac{AB}{2}\)
Xét Δ AMK và Δ BMC có:
AM = BM (cmt)
AMK = BMC (đối đỉnh)
MK = MC (gt)
Do đó, Δ AMK = Δ BMC (c.g.c) (đpcm)
b) Vì N là trung điểm của AC nên AN = NC
Xét Δ ANI và Δ CNB có:
AN = NC (cmt)
ANI = CNB (đối đỉnh)
NI = NB (gt)
Do đó, Δ ANI = Δ CNB (c.g.c)
=> AI = BC (2 cạnh tương ứng) (đpcm)
c) Vì Δ AMK = Δ BMC (câu a) => AKM = MCB (2 góc tương ứng)
Mà AKM và MCB là 2 góc so le trong nên AK // BC (1)
Vì Δ ANI = Δ CNB (câu b) => IAN = NBC (2 góc tương ứng)
Mà IAN và NBC là 2 góc so le trong nên AI // BC (2)
Từ (1) và (2) => AK và AI trùng nhau hay 3 điểm I, A, K thẳng hàng (3)
Có: Δ AMK = Δ BMC (câu a) => AK = BC (2 cạnh tương ứng)
Mà AI = BC (câu b) => AK = AI (4)
Từ (3) và (4) => A là trung điểm của IK (đpcm)
a) Xét tam giác AMN và tam giác BMC, ta có:
MA = MB (M là trung điểm của AB)
góc NMA = góc BMC (đối đỉnh)
MN = MC (gt)
=> tam giác AMN = tam giác BMC
b) Xét tứ giác ACBN, ta có:
M là trung điểm của AB (gt)
M là trung điểm của CN (MC = MN)
=> Tứ giác ACBN là hình bình hành
=> AN // BC
c) Do tứ giác ACBN là hình bình hành => AN // BC và AN = BC => góc ANC = góc BCN và AN = BC
Xét tam giác NAC và tam giác CBN, ta có:
AN = BC (cmt)
góc ANC = góc BCN (cmt)
CN chung
=> tam giác NAC = tam giác CBN
Vẽ hình đi bạn.