K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2017

a/ Xét tam giác AME và tam giác CBE có:

AE = EC

góc AEM = góc CEB

EM = EB

====> tam giác AME = tam giác CBE (c-g-c)

b/ Suy ra: AM = BC (2 cạnh tương ứng)(1)

góc AME = góc EBC ( 2 góc tương ứng)

Mà 2 góc này ở vị trí sole trong nên:

AM // BC

c/ Xét tam giác AFN và tam giác BFC có : góc AFN = góc BFC ( đối đỉnh)

FC = FN

AF = FB

=====> tam giác AFN = tam giác BFC ( c-g-c)

====> AN = BC ( hai cạnh tương ứng)(2)

góc ANF = góc FBC ( 2 góc tương ứng)

Từ (1) và (2) suy ra : AM = AN

d/ Vì góc ANF = góc FBC mà 2 góc này ở vị trí sole trong nên AN // BC

Ta có : AN//BC

AM // BC

Suy ra: M,A,N thẳng hàng ( tiên đề ocolit)

Giải thích: Qua một điểm nằm ngoài một đường thẳng,chỉ có một đường thẳng song song với đường thẳng cho trước

20 tháng 3 2020

Giải:

Xét ΔAMK,ΔBCKΔAMK,ΔBCK có:
AK=KB(=12AB)AK=KB(=12AB)

K1ˆ=K2ˆK1^=K2^ ( đối đỉnh )

MK=KC(gt)MK=KC(gt)

⇒ΔAMK=ΔBCK(c−g−c)⇒ΔAMK=ΔBCK(c−g−c)

⇒A1ˆ=Bˆ⇒A1^=B^ ( góc t/ứng )

Xét ΔANE,ΔCBEΔANE,ΔCBE có:
AE=EC(=12AC)AE=EC(=12AC)

E1ˆ=E2ˆE1^=E2^ ( đối đỉnh )

BE=EN(gt)BE=EN(gt)

⇒ΔANE=ΔCBE(c−g−c)⇒ΔANE=ΔCBE(c−g−c)

⇒A2ˆ=Cˆ⇒A2^=C^ ( góc t/ứng )

Ta có: Aˆ+Bˆ+Cˆ=180oA^+B^+C^=180o ( tổng 3 góc của ΔABCΔABC )

⇒Aˆ+A1ˆ+A2ˆ=180o⇒A^+A1^+A2^=180o

⇒MANˆ=180o⇒MAN^=180o

⇒M,A,N⇒M,A,N thẳng hàng (1)

Vì ΔAMK=ΔBCKΔAMK=ΔBCK

⇒MA=BC⇒MA=BC ( cạnh t/ứng )

Vì ΔANE=ΔCBEΔANE=ΔCBE

⇒AN=BC⇒AN=BC

⇒MA=AN(=BC)⇒MA=AN(=BC) (2)

Từ (1) và (2) ⇒A⇒A là trung điểm của MN

Vậy A là trung điểm của MN

6 tháng 1 2019

a) Xét \(\Delta MDA\)và \(\Delta CDB\)có:
MD = DC (gt)
DA = DB (gt)
\(\widehat{MDA}=\widehat{BDC}\)(đối đỉnh)
=> \(\Delta MDA=\Delta CDB\left(c.g.c\right)\)

b) Vì \(\Delta MDA=\Delta CDB\left(cma\right)\Rightarrow\widehat{MAD}=\widehat{DBC}\)(2 góc tương ứng)
Mà \(\widehat{MAD}\)so le trong với \(\widehat{DBC}\)
=> AM // BC (đpcm)

c) Xét \(\Delta AEN\)và \(\Delta BEC\)có:
EN = BE (gt)
AE = EC (gt)
\(\widehat{AEN}=\widehat{BEC}\)(đối đỉnh)
\(\Rightarrow\Delta AEN=\Delta CEB\left(c.g.c\right)\)
\(\Rightarrow\widehat{NAE}=\widehat{ECB}\)(2 góc tương ứng)
Mà \(\widehat{NAE}\)so le trong với \(\widehat{ECB}\)
\(\Rightarrow\)AN // BC
Ta có :
AN // BC
MA // BC
\(\Rightarrow AN\equiv MA\)
\(\Rightarrow\)M;A;N  thẳng hàng (đpcm) 

29 tháng 11 2016

A B M N C D E

a) xét tam giác ADM và tam giac BDC ta có

MD=DC (gt)

AD=DB(D là trung điểm AB)

góc ADM=góc BDC (2 góc doi đỉnh)

-> tam giác ADM= tam giác BDC (c-g-c)

b) ta có

góc MAD = góc DBC (  tam giác ADM= tam giác BDC )

mà 2 góc nẳm o vị trí soletrong

nên AM//BC

c) 

 xét tam giác AEN và tam giac BEC ta có

EN=EB (gt)

AE=EC(E là trung điểm AC)

góc AEN=góc BEC (2 góc doi đỉnh)

-> tam giác ANE = tam giác CBE (c-g-c)

-> góc NAE = góc BCE (2 góc tương ứng

mà 2 góc nằm o vi trí sole trong

nên AN//BC

ta có 

AN//BC (cmt)

AM//BC (cmb)

-> AM trùng AN

-> A,M,N thẳng hàng

29 tháng 11 2016

*-Bạn tự vẽ hình nhé!*

CM:a) Xét tam giác ADM và tam giác BDC có:

           AD=BD(D là trung điểm của AB)

           Góc ADM=góc BDC(đối đỉnh)

           DM=DC(gt)

   => tgiac ADM = tgiac BDC (c.g.c)

b) =>góc MAD= góc DBC (hai góc tương ứng)

   Mà 2 góc này ở vị trí so le trong

 => AM song song BC                                                                 (1)

c) chứng minh tương tự, ta có: tgiac AEN=tgiac CEB(c.g.c)

=> góc NAE= góc CEB(hai góc tương ứng)

mà 2 góc này ở vị trí so le trong

=> BC song song AN                                                             (2)

Từ (1) và (2)=> MA song song BC; AN song song BC

=> A,M,N thẳng hàng (ơ-clit)

*- cho mk nha!!!-Mơn b *:)*

                    

30 tháng 11 2015

M A N B C K E

Xét \(\Delta AMKvà\Delta BKCcó:\)

KA=KB

góc MKA=góc BKC

KM=KC

\(\Rightarrow\Delta AMK=\Delta BCK\left(c-g-c\right)\)

\(\Rightarrow\)AM=BC                                                  (1)

\(\Rightarrow\)MA//BC (góc M so le trong với góc C)      (3)

Xét \(\Delta AENvà\Delta BECcó:\)

EA=EC

góc AEN=góc BEC

EN=EB

\(\Rightarrow\Delta AEN=\Delta CEB\left(c-g-c\right)\)

\(\Rightarrow\)NA=BC                                                (2)

\(\Rightarrow\)NA//BC (góc N so le trong với góc C)     (4)

Từ (1) và (2) có: M,A,N thẳng hàng 

Từ (3) và (4) có: AM=AN