K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2017

Xét \(\Delta\)ABC có: D là trung điểm của AB

M là trung điểm của BC

\(\Rightarrow\)DM là đường trung bình của \(\Delta ABC\)

\(\Rightarrow DM\)//AC hay DM//AE

Ta có : M là trung điểm của BC

E là trung điểm của CA

\(\Rightarrow\)ME là đường trung bình của \(\Delta\)ABC

\(\Rightarrow\)ME//AB hay ME//AD

Xét tứ giác ADME có: DM//AE(cmt)

ME//AD(cmt)

\(\Rightarrow\)ADME là hình bình hành

Nếu \(\Delta\)ABC cân tại A có đường trung tuyến AM

\(\Rightarrow\)AM đồng thời là tia phân giác của \(\widehat{A}\)

Xét hình bình hành ADME có đường chéo AM là tia phân giác của \(\widehat{A}\)(cmt)

\(\Rightarrow\)ADME là hình thoi

Nếu \(\Delta\)ABC vuông tại A

\(\Rightarrow\widehat{A}=90^0\)

Xét hình bình hành ADME có \(\widehat{A}=90^0\)(cmt)

\(\Rightarrow\)ADME là hình chữ nhật

d/ Xét \(\Delta ABC\) vuông tại A, đường trung tuyến AM

\(\Rightarrow AM=\frac{1}{2}BC\)(Trong tam giác vuông, đường trung tuyến ứng với cạnh huyền thì bằng 1/2 cạnh huyền)

Áp dụng định lí Py-ta-go vào tam giác ABC vuông tại A ta có:

BC2=AB2+AC2

\(\Leftrightarrow BC=\sqrt{AB^2+AC^2}\)

\(\Leftrightarrow BC=\sqrt{6^2+8^2}\)

\(\Leftrightarrow BC=10\left(cm\right)\)

Khi đó:AM=\(\frac{1}{2}.BC=\frac{1}{2}.10=5\left(cm\right)\)

Vậy trong trường hợp tam giác ABC vuông tại A, AB=6cm và AC=8cm thì AM=5cm

12 tháng 12 2020

a) Xét ΔABC có 

D là trung điểm của AB(gt)

M là trung điểm của BC(gt)

Do đó: DM là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

⇒DM//AC và \(DM=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)

mà E∈AC và \(AE=\dfrac{AC}{2}\)(E là trung điểm của AC)

nên DM//AE và DM=AE

Xét tứ giác ADME có 

DM//AE(cmt)

DM=AE(cmt)

Do đó: ADME là hình bình hành(Dấu hiệu nhận biết hình bình hành)

b) Khi ΔABC cân tại A thì AB=AC

mà \(AD=\dfrac{AB}{2}\)(D là trung điểm của AB)

và \(AE=\dfrac{AC}{2}\)(E là trung điểm của AC)

nên AD=AE

Hình bình hành ADME có AD=AE(cmt)

nên ADME là hình thoi(Dấu hiệu nhận biết hình thoi)

Vậy: Khi ΔABC cân tại A thì ADME là hình thoi

c) Khi ΔABC vuông tại A thì \(\widehat{A}=90^0\)

Hình bình hành ADME có \(\widehat{A}=90^0\)(cmt)

nên ADME là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

Vậy: Khi ΔABC vuông tại A thì ADME là hình chữ nhật

d) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10cm

Xét ΔABC vuông tại A có AM là đường trung tuyến ứng với cạnh huyền BC(M là trung điểm của BC)

nên \(AM=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

hay \(AM=\dfrac{10}{2}=5cm\)

Vậy: Khi ΔABC vuông tại A thì AM=5cm

DD
26 tháng 12 2022

a) \(DM\) là đường trung bình của tam giác \(ABC\) nên \(DM\parallel AC\).

\(ME\) là đường trung bình của tam giác \(ABC\) nên \(ME \parallel AB\).

Tứ giác \(ADME\) có: \(DM \parallel AE, ME \parallel AD\) nên tứ giác \(ADME\) là hình bình hành. 

b) Tam giác \(ABC\) cân tại \(A\) suy ra \(AB=AC\) suy ra \(AD=AE\) khi đó hình bình hành \(ADME\) là hình thoi. 

c) Tam giác \(ABC\) vuông tại \(A\) suy ra \(\widehat{BAC}=90^o\) khi đó hình bình hành \(ADME\) là hình chữ nhật. 

d) \(BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\left(cm\right)\)

\(AM=\dfrac{BC}{2}=5\left(cm\right)\)

e) \(S_{ABC}=\dfrac{1}{2}.AB.AC=\dfrac{1}{2}.6.8=24\left(cm^2\right)\)

\(S_{ADME}=AD.AE=\dfrac{1}{2}AB.\dfrac{1}{2}AC=3.4=12\left(cm^2\right)\)

Giúp mình với,giải chi tiết cho mình nha!Bài 2: Cho hình thang ABCD (AB//CD).Gọi E,F lần lượt là trung điểm của AD và BC. Gọi K là giao điểm của AC và EFa. CM: AK = KC.b. Biết AB = 4cm, CD = 10cm. Tính các độ dài EK, KFBài 3. Cho tam giác ABC. Gọi D, M, E theo thứ tự là trung điểm của AB, BC, CA.a. CM: Tứ giác ADME là hình bình hành.b. Nếu tam giác ABC cân tại A thì tứ giác ADME là hình gì? Vì sao?c. Nếu tam giác...
Đọc tiếp

Giúp mình với,giải chi tiết cho mình nha!

Bài 2: Cho hình thang ABCD (AB//CD).Gọi E,F lần lượt là trung điểm của AD và BC. Gọi K là giao điểm của AC và EF

a. CM: AK = KC.

b. Biết AB = 4cm, CD = 10cm. Tính các độ dài EK, KF

Bài 3. Cho tam giác ABC. Gọi D, M, E theo thứ tự là trung điểm của AB, BC, CA.

a. CM: Tứ giác ADME là hình bình hành.

b. Nếu tam giác ABC cân tại A thì tứ giác ADME là hình gì? Vì sao?

c. Nếu tam giác ABC vuông tại A thì tứ giác ADME là hình gì? Vì sao?

d. Trong trường hợp tam giác ABC vuông tại A, cho biết AB = 6cm, AC = 8cm, tính độ
dài AM.

Bài 4: Cho hình bình hành ABCD có AD = 2AB, Ẩ = 60°. Gọi E và F lần lượt là trung
điểm của BC và AD.

a. Chứng minh AE vuông góc BF

b. Chứng minh tứ giác BFDC là hình thang cân.

c. Lấy điểm M đối xứng của A qua B. Chứng minh tứ giác BMCD là hình chữ nhật.

d. Chứng minh M, E, D thẳng hàng. 
Bài 5: Cho tam giác ABC vuông tại A có góc ABC= 60°, kẻ tia Ax song song với BC.
Trên Ax lấy điểm D sao cho AD = DC.
a. Tính các góc BAD và DAC.
b. Chứng minh tứ giác ABCD là hình thang cân.
c. Gọi E là trung điểm của BC. Chứng minh tứ giác ADEB là hình thoi.
d. Cho AC = 8cm, AB = 5cm. Tính diện tích hình thoi ABED

 

3
14 tháng 6 2017

bài 3:

D,                 bài giải 

diện tích là:

                (8x5):2=20(cm2)

                          Đ/S:20cm2

22 tháng 11 2020

Bài 2 : 

A B C D M E

a, Xét tam giác ABC ta có : 

D là trung điểm AB

M là trung điểm CB 

=)) DM là đường TB tam giác ABC 

=)) DM // AC hay DM // AE (1) 

Ta có : E là trung điểm AC 

M là trung điểm BA 

=)) EM là đường TB tam giác ABC 

=)) EM // AB hay EM // AD (2)

 Từ 1;2 =)) Tứ giác ADME là hình bình hành 

b, Nếu tam giác ABC cân tại A => AM là đường trung tuyến AM 

=)) AM đồng thời là tia phân giác của ^A 

Xét hình bình hành ADME có 2 đường chéo AM là tia phân giác của ^A (cmt)

=)) Tứ giác  ADME là hình thoi 

c, Nếu tam giác ABC vuông tại A => ^A = 90^0

Xét hình bình hành ADME có ^A =90^0

=)) Tứ giác ADME là hình chữ nhật 

Giúp mình với,giải chi tiết cho mình nha!Bài 2: Cho hình thang ABCD (AB//CD).Gọi E,F lần lượt là trung điểm của AD và BC. Gọi K là giao điểm của AC và EFa. CM: AK = KC.b. Biết AB = 4cm, CD = 10cm. Tính các độ dài EK, KFBài 3. Cho tam giác ABC. Gọi D, M, E theo thứ tự là trung điểm của AB, BC, CA.a. CM: Tứ giác ADME là hình bình hành.b. Nếu tam giác ABC cân tại A thì tứ giác ADME là hình gì? Vì sao?c. Nếu tam giác...
Đọc tiếp

Giúp mình với,giải chi tiết cho mình nha!

Bài 2: Cho hình thang ABCD (AB//CD).Gọi E,F lần lượt là trung điểm của AD và BC. Gọi K là giao điểm của AC và EF

a. CM: AK = KC.

b. Biết AB = 4cm, CD = 10cm. Tính các độ dài EK, KF

Bài 3. Cho tam giác ABC. Gọi D, M, E theo thứ tự là trung điểm của AB, BC, CA.

a. CM: Tứ giác ADME là hình bình hành.

b. Nếu tam giác ABC cân tại A thì tứ giác ADME là hình gì? Vì sao?

c. Nếu tam giác ABC vuông tại A thì tứ giác ADME là hình gì? Vì sao?

d. Trong trường hợp tam giác ABC vuông tại A, cho biết AB = 6cm, AC = 8cm, tính độ
dài AM.

Bài 4: Cho hình bình hành ABCD có AD = 2AB, Ẩ = 60°. Gọi E và F lần lượt là trung
điểm của BC và AD.

a. Chứng minh AE vuông góc BF

b. Chứng minh tứ giác BFDC là hình thang cân.

c. Lấy điểm M đối xứng của A qua B. Chứng minh tứ giác BMCD là hình chữ nhật.

d. Chứng minh M, E, D thẳng hàng.
Bài 5: Cho tam giác ABC vuông tại A có góc ABC= 60°, kẻ tia Ax song song với BC.
Trên Ax lấy điểm D sao cho AD = DC.
a. Tính các góc BAD và DAC.
b. Chứng minh tứ giác ABCD là hình thang cân.
c. Gọi E là trung điểm của BC. Chứng minh tứ giác ADEB là hình thoi.
d. Cho AC = 8cm, AB = 5cm. Tính diện tích hình thoi ABED

 

4
15 tháng 12 2016

2/

a/ hình thang ABCD có

AB // EF

==> AB // KF

xét tam giác ABC có

F là trung điểm của BC

AB // KF

==> KF là đường trung bình của tam giác ABC

==> K là trung điểm của AC

==> AK = KC

b/

E là trung điểm AD

F là trung điểm BC

==> EF là đường trung bình của hình thang ABCD

==> EF = (AB + CD) / 2 = (4 + 10) / 2 = 7(cm)

KF là đường trung bình của tam giác ABC nên

KF = AB / 2 = 4 / 2 = 2(cm)

==> EK = EF - KF = 7 - 2 = 5(cm)

vậy EK = 5(cm), KF = 2 (cm)

3/

a/ ta có

D là trung điểm của AB

M là trung điểm của BC

==> DM là đường trung bình của tam giác ABC

==> Dm // AC

==> DM // AE ( E thuộc AC, DM // AC)

chứng minh tương tự ta có

ME là đường trung bình của tam giác ABC

==> AD // ME

tứ giác ADME có DM // AE, AD // ME nên là HBH

b/ ( nếu tam giác ABC cân tại A)

tam giác ABC cân tại A ==> AB = AC

AD = 1/2 AB (D là trung điểm của AB)

AE = 1/2 AC (E là trung điểm của AC)

==> AD = AE

c/ (nếu tam giác ABC vuông)

ta có

tứ giác ADME là HBH

góc A = 90 độ

==> tứ giác ADME là HCN

d/ ta có

AB^2 + AC^2 = BC^2

6^2 + 8^2 = 100

==> BC = 10(cm)

AM là đường trung tuyến của tam giác ABC

==> AM = 1/2 BC = 1/2 . 10 = 5(cm)

vậy AM = 5cm

 

31 tháng 1 2017

Bài 2:Cho mk ý kiến,sai đề à???4cm=6cm nhé

Ôn tập toán 8

Bài 3:

Ôn tập toán 8

Bài 4:

Nối D với E, nối D với M:
Chứng minh được ED//FB (BEDF là hình thoi) (1)
BF là đường trung bình tam giác AMD
=> MD//FB (tc) (2)
(1),(2) => MD trùng với ED (định lý) ( Qua 1 điểm ko thuộc đường thẳng a có 1 và chỉ 1 đường thẳng đi qua điểm đó và song song với đường thẳng a )
từ đó bạn có thể cm BMCD là hình chữ nhật ( nếu cần )
( xét từ1 giác BDCM có BC cắt DM tại trung điểm của mỗi đoạn ->BMCD là Hình chữ nhật)

Bài 5:

Ôn tập toán 8