K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
26 tháng 9 2019

Sơ lược cách giải thôi nhé, bạn tự thay vào tính, mấy bài toàn căn với số thế này làm biếng tính toán hết ra lắm:

D là trọng tâm tam giác, gọi M là trung điểm AC; N là trung điểm AB

Theo tính chất trọng tâm: \(BD=\frac{2}{3}m_b=4\) ; \(CD=\frac{2}{3}m_c=6\)

\(DN=m_c-CD=3\) ; \(DM=m_b-BD=2\)

\(cos\widehat{BDC}=cos120^0=\frac{CD^2+BD^2-BC^2}{2BD.CD}\Rightarrow a=BC=...\)

\(cos\widehat{CDM}=cos60^0=\frac{DM^2+CD^2-CM^2}{2DM.CD}\Rightarrow CM=...\Rightarrow b=2CM=...\)

\(cos\widehat{BDN}=cos60^0=\frac{DN^2+BD^2-BN^2}{2DN.BD}\Rightarrow BN=...\Rightarrow c=2BN=...\)

19 tháng 5 2017

Tích vô hướng của hai vectơ và ứng dụng

Tích vô hướng của hai vectơ và ứng dụng

1 tháng 12 2019

\(\left\{{}\begin{matrix}m_a^2=\frac{b^2+c^2}{2}-\frac{a^2}{4}\\m_b^2=\frac{a^2+c^2}{2}-\frac{b^2}{4}\\m_c^2=\frac{a^2+b^2}{2}-\frac{c^2}{4}\end{matrix}\right.\)=>\(m_a^2+m_b^2+m_c^2=\frac{3}{4}\left(a^2+b^2+c^2\right)=\frac{3}{4}\left(3^2+5^2+6^2\right)=\frac{105}{2}\)

1 tháng 12 2019

Làm sao có các hệ thức trên vậy bn

31 tháng 3 2020

Ta có :

\(m_a=\sqrt{\frac{b^2+c^2}{2}-\frac{a^2}{4}}=\frac{\sqrt{2b^2+2c^2-a^2}}{2}=\frac{\sqrt{2b^2+2c^2-\left(2c^2-b^2\right)}}{2}=\frac{\sqrt{3}b}{2}\)

\(m_b=\sqrt{\frac{c^2+a^2}{2}-\frac{b^2}{4}}=\frac{\sqrt{2c^2+2a^2-b^2}}{2}=\frac{\sqrt{2c^2+2a^2-\left(2c^2-a^2\right)}}{2}=\frac{\sqrt{3}a}{2}\)

\(m_c=\sqrt{\frac{a^2+b^2}{2}-\frac{c^2}{4}}=\frac{\sqrt{2a^2+2b^2-c^2}}{2}=\frac{\sqrt{4c^2-c^2}}{2}=\frac{\sqrt{3}c}{2}\)

\(\Rightarrow m_a+m_b+m_c=\frac{\sqrt{3}}{2}\left(a+b+c\right)\)

Hình như đề nhầm dấu thì phải

31 tháng 3 2020

mk thấy trong đề nó viết là trừ