Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu trả lời tại đây
https://olm.vn/hoi-dap/tim-kiem?q=Cho+tam+gi%C3%A1c+ABC+c%C3%B3+G+l%C3%A0+tr%E1%BB%8Dng+t%C3%A2m.+Qua+G+v%E1%BA%BD+%C4%91%C6%B0%E1%BB%9Dng+th%E1%BA%B3ng+d+c%E1%BA%AFt+hai+c%E1%BA%A1nh+AB+v%C3%A0+AC+t%E1%BA%A1i+D+v%C3%A0+E.+Ch%E1%BB%A9ng+minh:+AB/AD=AC/AE=3&id=516183
Bài 1:
Không mất tổng quát giả sử $AB< AC$
Gọi $AH$ là phân giác $\widehat{BAC}$. Theo tính chất tia phân giác:
$\frac{BH}{CH}=\frac{AB}{AC}\Rightarrow \frac{BC}{CH}=\frac{AB+AC}{AC}$
Ta có:
$\frac{HN}{HC}=\frac{BN-BH}{HC}=\frac{BN}{HC}-\frac{BH}{HC}=\frac{BC}{2HC}-\frac{BH}{HC}=\frac{AB+AC}{2AC}-\frac{AB}{AC}$
$=\frac{AC-AB}{2AC}=\frac{AC-CD}{2AC}=\frac{AD}{2AC}=\frac{AM}{AC}$
Theo định lý Talet đảo suy ra $MN\parallel AH$
Ta có đpcm.
A B C P M N D E F
a) Ta có ^APB = ^BAC/2 + ^ABC/2 + ^ACB = 900 + ^ACB/2 = ^AMP; ^BAP = MAP
Suy ra \(\Delta\)AMP ~ \(\Delta\)APB (g.g) => \(\frac{AM}{PM}=\frac{AP}{BP}\). Tương tự \(\frac{PN}{BN}=\frac{AP}{BP}\)
Từ đó \(\frac{AM}{BN}.\frac{PN}{PM}=\left(\frac{AP}{BP}\right)^2\). Dễ thấy PM = PN, vậy \(\frac{AM}{BN}=\left(\frac{AP}{BP}\right)^2\)
b) Theo hệ thức lượng và tam giác đồng dạng, ta có biến đổi sau:
\(\frac{AM}{AC}+\frac{BN}{BC}+\frac{CP^2}{BC.AC}\)
\(=\frac{AM}{AP}.\frac{AP}{AC}+\frac{BN}{BP}.\frac{BP}{BC}+\frac{CP^2}{BC.AC}\)
\(=\frac{AP^2}{AB.AC}+\frac{BP^2}{BA.BC}+\frac{CP^2}{CA.CB}\)
\(=\frac{AP^2.BC+BP^2.CA+CP^2.AB}{BC.CA.AB}\)
\(=\frac{AP^2.\sin A+BP^2.\sin B+CA^2.\sin C}{2S}\)(S là diện tích tam giác ABC)
\(=\frac{AP^2.\sin\frac{A}{2}.\cos\frac{A}{2}+BP^2.\sin\frac{B}{2}.\cos\frac{B}{2}+CP^2.\sin\frac{C}{2}.\cos\frac{C}{2}}{S}\)
\(=\frac{FA.FP+DB.DP+EC.EP}{S}=\frac{dt\left[AFPE\right]+dt\left[BDPF\right]+dt\left[CEPD\right]}{S}=1.\)