K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2021

\(\tan B=\sqrt{2}\Leftrightarrow\dfrac{\sin B}{\cos B}=\sqrt{2}\Leftrightarrow\sin B=\sqrt{2}\cos B\\ \sin^2B+\cos^2B=1\Leftrightarrow3\cos^2B=1\\ \Leftrightarrow\cos B=\sqrt{\dfrac{1}{3}}=\dfrac{\sqrt{3}}{3}\\ \Leftrightarrow\sin B=\dfrac{\sqrt{6}}{3}\\ \Leftrightarrow\left\{{}\begin{matrix}\sin C=\cos B=\dfrac{\sqrt{3}}{3}\\\cos C=\sin B=\dfrac{\sqrt{6}}{3}\end{matrix}\right.\\ \cot C=\tan B=\sqrt{3};\tan C=\dfrac{1}{\cot C}=\dfrac{\sqrt{3}}{3}\)

18 tháng 9 2021

\(a,BC=\sqrt{AB^2+AC^2}=15\left(cm\right)\left(pytago\right)\)

Áp dụng HTL:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH^2=BH\cdot CH\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=5,4\left(cm\right)\\CH=\dfrac{AC^2}{BC}=9,6\left(cm\right)\\AH=\sqrt{5,4\cdot9,6}=51,84\left(cm\right)\end{matrix}\right.\)

\(b,\sin B=\cos C=\dfrac{AC}{BC}=\dfrac{4}{5}\\ \cos B=\sin C=\dfrac{AB}{BC}=\dfrac{3}{5}\\ \tan B=\cot C=\dfrac{AC}{AB}=\dfrac{4}{3}\\ \cot B=\tan C=\dfrac{AB}{AC}=\dfrac{3}{4}\)

NV
25 tháng 8 2021

\(tanB=\sqrt{2}\Rightarrow\dfrac{AC}{AB}=\sqrt{2}\Rightarrow\dfrac{AC^2}{AB^2}=2\)

\(\Rightarrow\dfrac{AC^2}{AB^2}+1=3\Rightarrow\dfrac{AC^2+AB^2}{AB^2}=3\Rightarrow\dfrac{BC^2}{AB^2}=3\)

\(\Rightarrow\dfrac{AB}{BC}=\dfrac{1}{\sqrt{3}}\)

Mà \(sinC=\dfrac{AB}{BC}\Rightarrow sinC=\dfrac{1}{\sqrt{3}}\)

\(sin^2C+cos^2C=1\Rightarrow\dfrac{1}{3}+cos^2C=1\Rightarrow cosC=\dfrac{\sqrt{6}}{3}\)

\(tanC=\dfrac{sinC}{cosC}=\dfrac{\sqrt{2}}{2}\)

b.

Trong tam giác vuông ACH:

\(sinC=\dfrac{AH}{AC}\Rightarrow AC=\dfrac{AH}{sinC}=\dfrac{2\sqrt{3}}{\dfrac{1}{\sqrt{3}}}=6\left(cm\right)\)

Trong tam giác vuông ABC:

\(tanB=\dfrac{AC}{AB}\Rightarrow AB=\dfrac{AC}{tanB}=\dfrac{6}{\sqrt{2}}=3\sqrt{2}\)

Áp dụng Pitago:

\(BC=\sqrt{AB^2+AC^2}=3\sqrt{6}\left(cm\right)\)

NV
25 tháng 8 2021

undefined

Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

hay AC=8(cm)

Xét ΔABC vuông tại A có 

\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{8}{10}=\dfrac{4}{5}\)

\(\cos\widehat{B}=\dfrac{3}{5}\)

\(\tan\widehat{B}=\dfrac{4}{3}\)

\(\cot\widehat{B}=\dfrac{3}{4}\)

AB<BC là đề sai rồi bạn

a: Xét ΔABC có góc A+góc B+góc C=180 độ

=>góc A=180 độ-30 độ-20 độ=130 độ

Xét ΔABC có BC/sinA=AC/sinB=AB/sinC

=>AC/sin30=AB/sin20=30/sin130

=>\(AC\simeq19,58\left(cm\right);AB\simeq13,39\left(cm\right)\)

ΔAHB vuông tại H có sin B=AH/AB

=>AH/13,39=1/2

=>AH=6,695(cm)

b: Xét ΔABC có AD là phân giác

nên AB/AC=BD/DC

=>\(\dfrac{BD}{DC}=\dfrac{13.39}{19.58}\)

=>\(\dfrac{BD}{13.39}=\dfrac{CD}{19.58}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{13.39}=\dfrac{CD}{19.58}=\dfrac{BD+CD}{13.39+19.58}=\dfrac{30}{32.97}=\dfrac{1000}{1099}\)

=>\(BD\simeq12,18\left(cm\right);CD\simeq17,82\left(cm\right)\)

 

20 tháng 8 2023

Mình camon b nhé

17 tháng 7 2018

B A C H

\(\frac{AB}{AC}=\frac{5}{6}\)\(\Rightarrow\)\(\frac{AB}{5}=\frac{AC}{6}=x\)  \(\left(x>0\right)\)

\(\Rightarrow\)\(AB=5x;\)\(AC=6x\)

Áp dụng hệ thức lượng ta có:

\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)

\(\Leftrightarrow\)\(\frac{1}{9}=\frac{1}{25x^2}+\frac{1}{36x^2}\)

\(\Leftrightarrow\)\(\frac{61}{900x^2}=\frac{1}{9}\)

\(\Rightarrow\)\(900x^2=549\)

\(\Rightarrow\)\(x=\sqrt{\frac{549}{900}}=\frac{\sqrt{61}}{10}\)

\(\Rightarrow\)\(AB=\frac{\sqrt{61}}{2}\);     \(AC=\frac{3\sqrt{61}}{5}\)

Áp dụng Pytago ta có:

    \(AB^2+AC^2=BC^2\)

\(\Leftrightarrow\)   \(BC=61x^2\)

\(\Leftrightarrow\)\(BC=x\sqrt{61}\)

\(\Leftrightarrow\)\(BC=\frac{\sqrt{61}}{10}.\sqrt{61}=6,1\)

p/s: bạn tham khảo nhé, do số không đẹp nên có lẽ mk tính toán sai 1 số chỗ, bạn bỏ qua và ktra nhé, sai đâu ib mk

17 tháng 7 2018

B A C H

\(\frac{AB}{AC}=\frac{5}{6}\)\(\Rightarrow\)\(\frac{AB}{5}=\frac{AC}{6}=x\)  \(\left(x>0\right)\)

\(\Rightarrow\)\(AB=5x;\)\(AC=6x\)

Áp dụng định lý Pytago ta có:

      \(AB^2+AC^2=BC^2\)

\(\Leftrightarrow\)\(BC^2=61x^2\)

\(\Leftrightarrow\)\(BC=x\sqrt{61}\)

Áp dụng hệ thức lượng ta có:

   \(AB.AC=AH.BC\)

\(\Leftrightarrow\)\(30x^2=3x\sqrt{61}\)

\(\Leftrightarrow\)\(x=\frac{\sqrt{61}}{10}\)

Đến đây bạn  thay x vào các biểu thức tính AB,AC,BC ở trên nhé