Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(AH^2=BH.CH=3,6.6,4=23,04\)
\(\Rightarrow AH=4,8\left(cm\right)\)
\(AC^2=AH^2+HC^2=23,04+40,96=64\)
\(\Rightarrow AC=8\left(cm\right)\)
\(AB^2=AH^2+BH^2=23,04+12,96=36\)
\(\Rightarrow AB=6\left(cm\right)\)
\(BC=BH+CH=3,6+6,4=10\left(cm\right)\)
\(tanB=\dfrac{8}{6}=\dfrac{4}{3}\Rightarrow B=53^o\)
\(\Rightarrow C=90^o-53^o=37^o\)
b) Xét Δ vuông ABH, có đường cao DH ta có :
\(AH^2=AD.AB\left(1\right)\)
Tương tự Δ vuông ACH :
\(AH^2=AE.AC\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow AD.AB=AE.AC\)
a: BC=BH+CH
=3,6+6,4=10(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
=>\(AH^2=3,6\cdot6,4=23,04\)
=>\(AH=\sqrt{23,04}=4,8\left(cm\right)\)
ΔAHC vuông tại H
=>\(AC^2=AH^2+HC^2\)
=>\(AC^2=4,8^2+6,4^2=64\)
=>AC=8(cm)
Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}=\dfrac{4}{5}\)
nên \(\widehat{B}\simeq53^0\)
ΔABC vuông tại A
=>\(\widehat{ABC}+\widehat{ACB}=90^0\)
=>\(\widehat{ACB}\simeq90^0-53^0=37^0\)
b: Sửa đề; \(AM\cdot MB+AN\cdot NC=MN^2\)
Xét tứ giác AMHN có
\(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)
=>AMHN là hình chữ nhật
Xét ΔHAB vuông tại H có HM là đường cao
nên \(AM\cdot MB=HM^2\)
Xét ΔHAC vuông tại H có HN là đường cao
nên \(AN\cdot NC=HN^2\)
\(AM\cdot MB+AN\cdot NC=HM^2+HN^2=MN^2\)
c: AK\(\perp\)MN
=>\(\widehat{ANM}+\widehat{KAC}=90^0\)
mà \(\widehat{ANM}=\widehat{AHM}\)(AMHN là hình chữ nhật)
nên \(\widehat{AHM}+\widehat{KAC}=90^0\)
mà \(\widehat{AHM}=\widehat{B}\left(=90^0-\widehat{HAB}\right)\)
nên \(\widehat{B}+\widehat{KAC}=90^0\)
mà \(\widehat{B}+\widehat{KCA}=90^0\)
nên \(\widehat{KAC}=\widehat{KCA}\)
=>KA=KC
\(\widehat{KAC}+\widehat{KAB}=90^0\)
\(\widehat{KCA}+\widehat{KBA}=90^0\)
mà \(\widehat{KAC}=\widehat{KCA}\)
nên \(\widehat{KAB}=\widehat{KBA}\)
=>KA=KB
mà KA=KC
nên KB=KC
=>K là trung điểm của BC
b: Xét ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB
nên \(\left\{{}\begin{matrix}AM\cdot AB=AH^2\left(1\right)\\AM\cdot MB=MH^2\end{matrix}\right.\)
Xét ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC
nên \(\left\{{}\begin{matrix}AN\cdot AC=AH^2\left(2\right)\\NA\cdot NC=NH^2\end{matrix}\right.\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
Xét tứ giác AMHN có
\(\widehat{NAM}=\widehat{ANH}=\widehat{AMH}=90^0\)
Do đó: AMHN là hình chữ nhật
Xét ΔHNM vuông tại H có
\(NM^2=HN^2+HM^2\)
hay \(HB\cdot HC=AM\cdot MB+AN\cdot NC\)
Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=3^2+4^2=25\)
hay BC=5cm
Áp dụng hệ thức lượng trong tam giác vuông vào ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=1.8cm\\CH=3.2cm\\AH=2.4cm\end{matrix}\right.\)
Viết đề thiếu giả thiết rồi, thoi mình cứ giả sử tam giác ABC vuông tại A, đường cao AH
=>\(\hept{\begin{cases}AB^2=BH.BC\\AC^2=CH.BC\end{cases}}\Rightarrow\frac{AB^2}{AC^2}=\frac{BH.BC}{CH.BC}=\frac{BH}{CH}\)
a) \(BC=BH+HC=3,6+6,4=10\left(cm\right)\)
Tam giác ABC vuông tại A, đường cao AH có:
\(AB^2=BC.BH\\ \Rightarrow AB=\sqrt{BC.BH}=\sqrt{10.3,6}=6\left(cm\right)\)
Tương tự:
\(AC=\sqrt{BC.CH}=\sqrt{10.6,4}=8\left(cm\right)\)
Ta có: \(AH^2=BH.CH\)
\(\Rightarrow AH=\sqrt{BH.CH}=\sqrt{3,6.6,4}=4,8\left(cm\right)\)
b) Tứ giác AEHF là hình chữ nhật (tứ giác có 3 góc vuông) nên EF = AH = 4,8 (cm)
c) Tam giác AHB vuông tại H có EH là đường cao (gt) \(\Rightarrow AH^2=AB.AE\)
Tương tự tam giác AHC ta có \(AH^2=AC.AF\Rightarrow AB.AE=AC.AF\)
Xét tam giác AEF và tam giác ABC có:
\(\widehat{FAE}.chung\)
\(\dfrac{AF}{AB}=\dfrac{AE}{AC}\left(vì.AB.AE=AC.AF\right)\)
Do đó tam giác AEF đồng dạng tam giác ABC.
Ta có: BC=BH+HC
nên BC=3,6+6,4
hay BC=10cm
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AH^2=HB\cdot HC\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=4,8cm\\AB=6cm\\AC=8cm\end{matrix}\right.\)
BC=BH+HC=3,6+6,4=10CM
AB^2=BH.BC
=>AB=6CM
AC=\(\sqrt{BC^2-AB^2}=8CM\)
AH^2=BH.HC
=>AH=4,8CM