K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2019

a) Chứng minh tam giac AMB = tam giac DMC

Xét tam giác MAB và tam giác MDC, có

- MA = MD (M là trung điểm AD)

- MB = MD (M là trung điểm BD) 

- Góc M đối nhau

=> tam giác MAB = tam giác MDC (cạnh - góc - cạnh)  (đpcm)

b) Chứng minh DC vuông góc AC

Ta có góc BAC = 90 độ (tam giác ABC vuông tại A)

=> góc A1 + góc A2 = 90 độ

mà góc A1 = góc CDA (do tam giác MAB = tam giác MDC chứng minh trên)

=> góc ADC + góc A2 = 90 độ

Xét tam giác CAD,

có: góc ACD = 180 độ - (góc ADC + góc A2) = 180 độ - 90 độ = 90 độ

=> góc ACD = 90 độ

=> tam giác DAC vuông tại C

Ta có DC vuông góc AC tại C

và BA vuông góc AC tại A

=> BA // DC (đpcm)

c) AM = 1/2BC

Câu này áp dụng định lý: trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền => AM = 1/2 BC (đpcm)

Còn nếu yêu cầu phải trình bày cách làm, thì bạn làm như phía dưới:

Xét tứ giác ABDC có:

- BA = CD (do tam giác MAB = tam gia MDC (chứng minh trên)

- DC // BA

=> tứ giác ABDC là hình bình hành

và có góc A vuông

=> tứ giác ABDC là hình chữ nhật

=> 2 đường chéo của hình chữ nhật là AD = BC

mà M là trung điểm của AD và BC

=> AM = 1/2 BC (đpcm)

10 tháng 1 2017

a) Xét tam giác BMA và tam giác CMN:

  BM=MC ( M là trung điểm của BC)

  \(\widehat{BMA=\widehat{CMN}}\)(2 góc đối đỉnh)

AM=MN ( M là trung điểm của AN)

=>Tam giác BMA=tam giác CMN(c-g-c)

 =>\(\widehat{ABM}\)=\(\widehat{MCN}\)(2 góc tương ứng)

mà chúng nằm ở vị trí so le trong

 =>BA//NC

b) CM cho AN=BC =>Am=\(\frac{1}{2}\)BC

10 tháng 1 2018

A B M N C 1 2

 Xét ΔAMB và ΔNMC có :

MA=MN ( gt)

\(\widehat{M_1}\)\(\widehat{M_2}\)(2 góc đối đỉnh )

MB =MC (gt)

Suy ra: ΔAMB=ΔNMC(c.g.c)

⇒ CN = AB ( 2 cạnh tương ứng )

⇒ \(\widehat{NCM}=\widehat{ABM}\)( 2 góc tương ứng ) ⇒ CN // AB ( vì có cặp góc so le trong bằng nhau )

14 tháng 11 2021
a) Ta có: ΔAMB = ΔAMC ⇒ MB = MC (2 cạnh tương ứng) ⇒ M là trung điểm của BC b) Ta có: ΔAMB = ΔAMC ⇒ ˆ B A M = ˆ C A M ⇒ B A M ^ = C A M ^ (2 góc tương ứng) ⇒ AM là tia phân giác của ˆ A A ^ c) Ta có: ΔAMB = ΔAMC ⇒ ˆ A M B = ˆ A M C ⇒ A M B ^ = A M C ^ (2 góc tương ứng) mà ˆ A M B + ˆ A M C = 180 o A M B ^ + A M C ^ = 180 o ⇒ ˆ A M B = ˆ A M C = 90 o ⇒ A M B ^ = A M C ^ = 90 o ⇒ AM ⊥ BC
31 tháng 1 2020

a,vì M là trung điểm của BC (gt)

=>MB=MC

Xét tam giác ABM và tam giác DCM, có:

MB=MC(cmt)

^AMB=^DMC(đối đỉnh)

MA=MD

=> tam giác ABM = tamgiác DCM

b, vì tam giác ABM = tam giác DCM (cmt)

=> ^BAM=^CDM(2 góc t/ư)

Mà 2 góc này ở VT SLT

=> AB//CD

c, Vì AH vuống góc vs BC(gt)

=> AHM=90

Vì DK vuông góc vs BC(gt)

=> DKM=90

Xét tam giác AHM và tam giác KDM,có: 

^AHM=^DKM(=90)

MA=MD(Gt)

AMH=^DMK(đối đỉnh)

=> tam giác AHM= tam giác DKM( cạnh huyền - góc nhọn)

=> MH = MK ( 2 cạnh t/ư)

=> M là trung điểm của HK

học tốt >.<