Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Chứng minh tam giac AMB = tam giac DMC
Xét tam giác MAB và tam giác MDC, có
- MA = MD (M là trung điểm AD)
- MB = MD (M là trung điểm BD)
- Góc M đối nhau
=> tam giác MAB = tam giác MDC (cạnh - góc - cạnh) (đpcm)
b) Chứng minh DC vuông góc AC
Ta có góc BAC = 90 độ (tam giác ABC vuông tại A)
=> góc A1 + góc A2 = 90 độ
mà góc A1 = góc CDA (do tam giác MAB = tam giác MDC chứng minh trên)
=> góc ADC + góc A2 = 90 độ
Xét tam giác CAD,
có: góc ACD = 180 độ - (góc ADC + góc A2) = 180 độ - 90 độ = 90 độ
=> góc ACD = 90 độ
=> tam giác DAC vuông tại C
Ta có DC vuông góc AC tại C
và BA vuông góc AC tại A
=> BA // DC (đpcm)
c) AM = 1/2BC
Câu này áp dụng định lý: trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền => AM = 1/2 BC (đpcm)
Còn nếu yêu cầu phải trình bày cách làm, thì bạn làm như phía dưới:
Xét tứ giác ABDC có:
- BA = CD (do tam giác MAB = tam gia MDC (chứng minh trên)
- DC // BA
=> tứ giác ABDC là hình bình hành
và có góc A vuông
=> tứ giác ABDC là hình chữ nhật
=> 2 đường chéo của hình chữ nhật là AD = BC
mà M là trung điểm của AD và BC
=> AM = 1/2 BC (đpcm)
a) Xét tam giác BMA và tam giác CMN:
BM=MC ( M là trung điểm của BC)
\(\widehat{BMA=\widehat{CMN}}\)(2 góc đối đỉnh)
AM=MN ( M là trung điểm của AN)
=>Tam giác BMA=tam giác CMN(c-g-c)
=>\(\widehat{ABM}\)=\(\widehat{MCN}\)(2 góc tương ứng)
mà chúng nằm ở vị trí so le trong
=>BA//NC
b) CM cho AN=BC =>Am=\(\frac{1}{2}\)BC
A B M N C 1 2
Xét ΔAMB và ΔNMC có :
MA=MN ( gt)
\(\widehat{M_1}\)= \(\widehat{M_2}\)(2 góc đối đỉnh )
MB =MC (gt)
Suy ra: ΔAMB=ΔNMC(c.g.c)
⇒ CN = AB ( 2 cạnh tương ứng )
⇒ \(\widehat{NCM}=\widehat{ABM}\)( 2 góc tương ứng ) ⇒ CN // AB ( vì có cặp góc so le trong bằng nhau )
a,vì M là trung điểm của BC (gt)
=>MB=MC
Xét tam giác ABM và tam giác DCM, có:
MB=MC(cmt)
^AMB=^DMC(đối đỉnh)
MA=MD
=> tam giác ABM = tamgiác DCM
b, vì tam giác ABM = tam giác DCM (cmt)
=> ^BAM=^CDM(2 góc t/ư)
Mà 2 góc này ở VT SLT
=> AB//CD
c, Vì AH vuống góc vs BC(gt)
=> AHM=90
Vì DK vuông góc vs BC(gt)
=> DKM=90
Xét tam giác AHM và tam giác KDM,có:
^AHM=^DKM(=90)
MA=MD(Gt)
AMH=^DMK(đối đỉnh)
=> tam giác AHM= tam giác DKM( cạnh huyền - góc nhọn)
=> MH = MK ( 2 cạnh t/ư)
=> M là trung điểm của HK
học tốt >.<