K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2018

A B C M M M M 1 2 4 3 S

Gọi S là trung điểm của M1M4. Ta đi c/m S là điểm cố định.

Trong \(\Delta\)M1M2M4 có: A là trung điểm M1M2; S là trung điểm M1M4 => AS là đường trung bình \(\Delta\)M1M2M4

=> AS = M2M4 /2 và AS // M2M4  (1)

Trong \(\Delta\)M2M3M4 có: B là trung điểm M2M3 ; C là trung điểm M3M4 => BC là đường trung bình \(\Delta\)M2M3M4

=> BC = M2M4 /2 và BC // M2M4 (2)

Từ (1) và (2) suy ra: AS = BC và AS // BC => Tứ giác ABCS là hình bình hành.

Ta thấy: Hình bình hành ABCS có 3 đỉnh A;B;C cố định nên đỉnh S cố định

=> Trung điểm của M1M4 là một điểm cố định (đpcm).

Bài 1: Trên các cạnh AB, BC, CA của tam giác ABC lần lượt lấy C1, A1, B1 sao cho các đường thẳng AA1, BB1, CC1, đồng quy tại O. Đường thẳng qua O // AC cắt A1B1, B1C1, tại K và M tương ứng. CMR OK = OM Bài 2: Cho tam giác ABC có I là trung điểm BC. Đường thẳng d qua I cắt AB, AC tại M và N. Đường thẳng d' đi qua I cắt AB, AC tại P và Q. Giả sử M và P nằm về một phía đối với BC và các đường thẳng...
Đọc tiếp

Bài 1: Trên các cạnh AB, BC, CA của tam giác ABC lần lượt lấy C1, A1, Bsao cho các đường thẳng AA1, BB1, CC1, đồng quy tại O. Đường thẳng qua O // AC cắt A1B1, B1C1, tại K và M tương ứng. CMR OK = OM 

Bài 2: Cho tam giác ABC có I là trung điểm BC. Đường thẳng d qua I cắt AB, AC tại M và N. Đường thẳng d' đi qua I cắt AB, AC tại P và Q. Giả sử M và P nằm về một phía đối với BC và các đường thẳng NP, MQ cắt BC tại E và F. CM IE = IF.

Bài 3: Qua điểm M tùy ý trên đáy lớn AB của hình thang ABCD ta kẻ các đường thẳng // với 2 đường chéo AC và BD, Các đường // này cắt BC, AD lần lượt ại E, F tương ứng. Đoạn thẳng EF cắt AC, BD tương ứng tại I và J.

1) CMR nếu H là TĐ của IJ thì H cũng là TĐ của EF

2) Trong trường hợp AB = 2CD hãy chỉ ra vị trí của M trên AB sao cho EJ = JI = IF

Giải giúp em :) Cảm ơn nhiều <3

0