Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B M I K C D
a, Xét △ABC có: \(\widehat{A}+\widehat{ABC}+\widehat{ACB}=180^o\)
\(\Rightarrow45^o+70^o+\widehat{ACB}=180^o\)
\(\Rightarrow\widehat{ACB}=65^o\)
b, Xét △ABM và △DCM
Có: MA = MD (giả thiết)
\(\widehat{AMB}=\widehat{CMD}\)(đối đỉnh)
\(BM=MC\)(M là trung điểm của BC)
=> △ABM = △DCM (c.g.c)
=> \(\widehat{ABC}=\widehat{MCD}\)(2 góc tương ứng)
Mà 2 góc này nằm ở vị trí so le trong
=> AB // CD
c, Xét △IMB và △KMC
Có: \(\widehat{IMB}=\widehat{CMK}\) (đối đỉnh)
BM = MC (gt)
\(\widehat{ABC}=\widehat{MCD}\)(cmt)
=> △IMB = △KMC (g.c.g)
=> MI = MK (2 cạnh tương ứng)
Mà M nằm giữa I, K
=> M là trung điểm của IK
cau 1 :
A B C E
Xet tam giac ABD va tam giac EBD co : BD chung
goc ABD = goc DBE do BD la phan giac cua goc ABC (gt)
AB = BE (Gt)
=> tam giac ABD = tam giac EBD (c - g - c)
=> goc BAC = goc DEB (dn)
ma goc BAC = 90 do tam giac ABC vuong tai A (gt)
=> goc DEB = 90
=> DE _|_ BC (dn)
b, tam giac ABD = tam giac EBD (cau a)
=> AB = DE (dn)
AB = 6 (cm) => DE = 6 cm
DE _|_ BC => tam giac DEC vuong tai E
=> DC2 = DE2 + CE2 ; DC = 10 cm (gt); DE = 6 cm (cmt)
=> CE2 = 102 - 62
=> CE2 = 64
=> CE = 8 do CE > 0
a)Xét ΔAMD và ΔCMB có :
góc AMB = góc CMD ( đối đỉnh)
AM = NC ( GT)
BM = MD ( GT)
--->ΔAMD = ΔCMB(c.g.c)
b) ta có góc CAD = góc ACB(ΔAMD = ΔCMB)
tạo ra hai góc so le trong bằng nhau
--->AD//BC
c)Xét ΔABC và ΔCDA có :
AC : cạnh chung
AD = BC (ΔAMD = ΔCMB)
góc CAD = góc ACB(ΔAMD = ΔCMB)
--->ΔABC = ΔCDA(c.g.c)
d)ta có AE + ED = AD
AF+ FC = BC
mà EF= BF; AD = BC
--->AE = FC
xét ΔAFC và ΔACE có :
AE = FC (CMT)
AC : cạnh chung
góc CAE = góc ACF (ΔAMD = ΔCMB)
--->ΔAFC = ΔCEA ( c.g.c)
--->góc AEC = góc AFC ( hai góc tương ứng)
--->góc AEC = góc AFC=90'
--->AF vuông góc với BC
a) Xét t/g AMD và t/g CMB có:
AM = CM (gt)
AMD = CMB ( đối đỉnh)
MD = MB (gt)
Do đó, t/g AMD = t/g CMB (c.g.c) (đpcm)
b) t/g AMD = t/g CMB (câu a)
=> ADM = CBM (2 góc tương ứng)
Mà ADM và CBM là 2 góc so le trong nên AD // BC (đpcm)
c) t/g AMD = t/g CMB (câu a)
=> AD = BC (2 cạnh tương ứng)
Xét t/g ABC và t/g CDA có:
BC = AD (gt)
ACB = CAD (so le trong)
AC là cạnh chung
Do đó, t/g ABC = t/g CDA (c.g.c) (đpcm)
d) Có: AD = BC (câu c)
DE = BF (gt)
Suy ra AD - DE = BC - BF
=> AE = CF
Mà AE // CF do AD // BC (câu b)
Nên CE // AF ( vì theo tính chất đoạn chắn AE = CF khi AE // CF và CE // AF)
Lại có: CE _|_ AD (gt) => AF _|_ AD
Mà BC // AD (câu b) => AF _|_ BC (đpcm)
KHÔNG THẤY HÌNH THÌ VÀO THỐNG KÊ HỎI ĐÁP NHA
A) VÌ \(BH\perp AD\Rightarrow\widehat{BHA}=90^o\)
\(CI\perp AD\Rightarrow\widehat{CID}=90^o\)
\(\Rightarrow\widehat{BHA}=\widehat{CID}=90^o\)hay \(\widehat{BHI}=\widehat{CIH}=90^o\)
HAI GÓC NÀY Ở VỊ TRÍ SO LE TRONG BẰNG NHAU
=> BH // CI (ĐPCM)
B)
XÉT \(\Delta ABC\)VUÔNG TẠI A
\(\Rightarrow\widehat{A}=90^o\)hay \(\widehat{BAH}+\widehat{HAC}=90^o\left(1\right)\)
XÉT \(\Delta AHB\)VUÔNG TẠI H
\(\Rightarrow\widehat{H}=90^o\)hay \(\widehat{BAH}+\widehat{ABH}=180^o-90^o=90^o\left(2\right)\)
từ (1) và (2) \(\Rightarrow\widehat{HAC}=\widehat{ABH}\)
XÉT \(\Delta ABH\)VÀ\(\Delta CAI\)CÓ
\(\widehat{H}=\widehat{I}=90^o\)
AB = AC (gt)
\(\widehat{ABH}=\widehat{IAC}\)(CMT)
=>\(\Delta ABH\)=\(\Delta CAI\)(C-G-C)
=> BH = AI ( HAI CẠNH TƯƠNG ỨNG )
A B C M H I 1 2 2 1
a,Xét tam giác AIH và tam giác MHI có
IH là cạnh chung
H2^=I1^(MI//AC)
H1^=I2^(MH//AB)
=> tam giác AIH = tam giác MHI(g.c.g)
Chọn D