K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2020
https://i.imgur.com/T1xhaiw.jpg
27 tháng 8 2018

Giải bài 9 trang 17 sgk Hình học 10 | Để học tốt Toán 10

Ta có:

Giải bài 9 trang 17 sgk Hình học 10 | Để học tốt Toán 10

⇒ ΔMHS đều.

MD ⊥ SH nên MD là đường cao đồng thời là trung tuyến của ΔMHS.

⇒ D là trung điểm của HS

Giải bài 9 trang 17 sgk Hình học 10 | Để học tốt Toán 10

Chứng minh tương tự ta có:

Giải bài 9 trang 17 sgk Hình học 10 | Để học tốt Toán 10

(Vì các tứ giác BSMP, HMQC, MRAG là hình bình hành)

Giải bài 9 trang 17 sgk Hình học 10 | Để học tốt Toán 10

8 tháng 11 2019

A B C I H K D E M N

Bổ đề 1: Xét tứ giác MNPQ là tứ giác lồi có MP giao NQ tại R. Gọi H,K lần lượt là trực tâm của tam giác MRN;PRQ. U và V lần lượt là trung điểm của NP và MQ. Khi đó UV vuông góc với HK.

Bổ đề 2: Xét tam giác ABC nội tiếp (O), L là điểm chính giữa cung BAC. Lấy X thuộc cạnh AB, Y thuộc cạnh AC sao cho BX = CY. Khi đó LX = LY.

Hai bổ đề trên rất quen thuộc, các bạn tự chứng minh.

Giải bài toán: Đặt M,N thứ tự là trung điểm của BD,CE. Ta có BM = CN (= BD/2 = CE/2)

Gọi K là trung điểm cung BAC. Theo Bổ đề 2 thì KM = KN (1)

Dễ thấy ID = IC; IB = IE; BD = CE. Suy ra \(\Delta\)BID = \(\Delta\)EIC (c.c.c)

Hai tam giác trên có trung tuyến tương ứng là IM,IN. Do đó IM = IN (2)

Để ý rằng I là trực tâm của \(\Delta\)BFC. Áp dụng Bổ đề 1 vào tứ giác BDEC ta được IH vuông góc MN  (3)

Từ (1);(2) và (3) suy ra ba điểm I,H,K thẳng hàng. Đó là điều phải chứng minh.