K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔBDI vuông tại D và ΔBEI vuông tại E có

BI chung

góc DBI=góc EBI

Do đó: ΔBDI=ΔBEI

=>ID=IE

Xét ΔAEI vuông tại E và ΔAFI vuông tại F có

AI chung

góc EAI=góc FAI

Do đó: ΔAEI=ΔAFI

=>IE=IF=ID

22 tháng 11 2023

a: Xét ΔBDI vuông tại D và ΔBFI vuông tại F có

BI chung

\(\widehat{DBI}=\widehat{FBI}\)

Do đó: ΔBDI=ΔBFI

=>ID=IF

Xét ΔCFI vuông tại F và ΔCEI vuông tại E có

CI chung

\(\widehat{FCI}=\widehat{ECI}\)

Do đó: ΔCFI=ΔCEI

=>IE=IF

b: IE=IF

ID=IF

Do đó: IE=ID

Xét ΔADI vuông tại D và ΔAEI vuông tại E có

AI chung

ID=IE

Do đó: ΔADI=ΔAEI

=>\(\widehat{DAI}=\widehat{EAI}\)

=>\(\widehat{BAI}=\widehat{CAI}\)

=>AI là phân giác của \(\widehat{BAC}\)

1 tháng 12 2014

Xét 2 TG vuông DBI và EBI, ta có:

 DBI=IBE(BI là phân giác của góc B); BI:cạnh chung

=>TG DBI=TG EBI(cạnh huyền- góc nhọn)

=>ID=IE(2 cạnh tương ứng)

Xét 2 TG vuông EIC và FIC, ta có:

ECI=FCI(CI là phân giác góc C); CI:cạnh chung

=>TG EIC=TG FIC(cạnh huyền- góc nhọn)

=>IE=IF(2 cạnh tương ứng)

*Ta có: ID=IE(cmt); IE=IF(cmt)=>ID=IE=IF

4 tháng 12 2018

Xét tam giác BDI và tam giác BEI có

IB(cạnh chung, hay là cạnh huyền)

gócB1=gócB2(gt)

gócD=gócE(=90độ)

suy ra tam giac BDI =tam giác BEI (cạnh huyền, góc nhọn)

suy ra cạnh ID=cạnh IE (2 cạnh tương ứng)    (1)

Xét tam giác CEI và tam giác FIC có

IC ( cạnh chung,hay là cạnh huyền)

cạnh IE= cạnh IF(=90độ)

góc C1= góc C2( gt)

suy ra tam giác CEI = tam giác FIC(cạnh huyền, góc nhọn )     (2) 

Từ đó ta suy ra ID=IE=IF(đpcm)

Từ (1) và (2) suy ra cạnh

11 tháng 12 2017

vãi điểm I ở đâu nhề

16 tháng 11 2016

A B C I 90 90 90 D E F

16 tháng 11 2016

Xét tam giác EIC và tam giác FIC có:

IC chung

\(\widehat{ECI}\) = \(\widehat{FCI}\)

\(\widehat{IEC}\) = \(\widehat{IFC}\)

Suy ra 2 tam giác này bằng nhau (1)

 

xét tam giác DBI và tam giác FBI có:

BI chung

góc FBI bằng góc IBD

góc BDI bằng góc IFB

Suy ra 2 tam giác này bằng nhau (2)

Xét tam giác BIF và tam giác CIF có:

IF chung

góc IFC bằng góc IFB

góc IBF bằng góc ICF

Suy ra hai tam giác này bằng nhau (3)

TỪ (1), (2), (3) TA SUY RA ĐOẠN THẲNG IE = ID = IF ( 3 cạnh tương ứng)

25 tháng 11 2016

A B C I D E F 1 2 3 4 1 2 1 2

Giải:

Xét \(\Delta DIB\) có: \(\widehat{B_2}+\widehat{I_1}=90^o\) ( do \(\widehat{BDI}=90^o\) )

Xét \(\Delta FIB\) có: \(\widehat{B_1}+\widehat{I_2}=90^o\) ( do \(\widehat{IFB}=90^o\) )

\(\widehat{B_1}=\widehat{B_2}\left(=\frac{1}{2}\widehat{B}\right)\)

\(\Rightarrow\widehat{I_1}=\widehat{I_2}\) (*)

Xét \(\Delta DIB,\Delta FIB\) có:
\(\widehat{B_1}=\widehat{B_2}\left(=\frac{1}{2}\widehat{B}\right)\)

\(BI\): cạnh chung

\(\widehat{I_1}=\widehat{I_2}\) ( theo (*) )

\(\Rightarrow\Delta DIB=\Delta FIB\left(g-c-g\right)\)

\(\Rightarrow ID=IF\) ( cạnh tương ứng ) (1)

Xét \(\Delta EIC\) có: \(\widehat{I_3}+\widehat{C_2}=90^o\) ( do \(\widehat{IEC}=90^o\) )

Xét \(\Delta FIC\) có: \(\widehat{I_4}+\widehat{C_1}=90^o\) ( do \(\widehat{IFC}=90^o\) )

\(\widehat{C_1}=\widehat{C_2}\left(=\frac{1}{2}\widehat{C}\right)\)

\(\Rightarrow\widehat{I_3}=\widehat{I_4}\) (**)

Xét \(\Delta EIC,\Delta FIC\) có:
\(\widehat{C_1}=\widehat{C_2}\left(=\frac{1}{2}\widehat{C}\right)\)

\(IC\): cạnh chung

\(\widehat{I_3}=\widehat{I_4}\) ( theo (**) )

\(\Rightarrow\Delta EIC=\Delta FIC\left(g-c-g\right)\)

\(\Rightarrow IE=IF\) ( cạnh tương ứng )

Từ (1) và (2) suy ra \(ID=IF=IE\left(đpcm\right)\)

Vậy ID = IF = IE

25 tháng 11 2016

Xét 2 TG vuông DBI và EBI,ta có :

DBI=EBI (BI là phân giác của góc B);BI cạnh chung

=>TG DBI=TG EBI(cạnh huyền-góc nhọn)

=>ID=IE(2 cạnh tương ứng)

Xét 2 TG vuông EIC và FIC ,ta có:

ECI=FIC(CI là phân giác góc C);CI cạnh chung

=>TG DBI=TG EBI(cạnh huyền-góc nhọn)

=>IE=IF( 2 cạnh tương ứng)

Ta có : ID=IE(cmt),IE=IF(cmt)=>ID=IE=IF

 

Chúc bạn học tốt

 

a) Xét \(\Delta BID\)và \(\Delta BIE\)có:

         \(\widehat{IDB}=\widehat{IEC}=90^o\)

          BI là cạnh chung

           \(\widehat{DBI}=\widehat{EBI}\)(BI là tia p/g của \(\widehat{B}\))

\(\Rightarrow\Delta BID=\Delta BIE\left(CH-GN\right)\)

=> ID = IE (2 cạnh tương ứng)  (1)

Xét \(\Delta CIE\)và \(\Delta CIF\)có:

      \(\widehat{IEC}=\widehat{IFC}=90^o\)

       CI là cạnh chung

       \(\widehat{ECI}=\widehat{FCI}\)(CI là tia p/g của \(\widehat{C}\))

\(\Rightarrow\Delta CIE=\Delta CIF\left(CH-GN\right)\)

=> IE = IF (2 cạnh tương ứng) (2)

Từ (1) và (2) => ID = IE = IF

b) 

24 tháng 12 2019

A B C I D E F 1 2 1 2

B)XÉT\(\Delta DAI\) VÀ \(\Delta FAI\)

\(DI=FI\left(CMT\right)\)

\(D_1=F_1=90^o\left(GT\right)\)

AI LÀ CẠNH CHUNG

\(\Rightarrow\Delta DAI=\Delta FAI\left(C-G-C\right)\)

\(\Rightarrow A_1=A_2\)(HAI GÓC TƯƠNG ỨNG)

MÀ AI NẰM GIỮA HAI TIA AD VÀ À

=>AI LÀ PHÂN GIÁC CỦA GÓC A

Bổ sung đề: ID vuông góc với AB

a) Xét ΔIDB vuông tại D và ΔIFB vuông tại F có 

BI chung

\(\widehat{DBI}=\widehat{FBI}\)(BI là tia phân giác của \(\widehat{DBF}\))

Do đó: ΔIDB=ΔIFB(cạnh huyền-góc nhọn)

Suy ra: ID=IF(hai cạnh tương ứng)

Sửa đề: Chứng minh IE=IF

Xét ΔIFC vuông tại F và ΔIEC vuông tại E có 

CI chung

\(\widehat{FCI}=\widehat{ECI}\)(CI là tia phân giác của \(\widehat{FCE}\))

Do đó: ΔIFC=ΔIEC(cạnh huyền-góc nhọn)

Suy ra: IF=IE(Hai cạnh tương ứng)