K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2019

Em tham khảo link này nhé!

Câu hỏi của channel Anhthư - Toán lớp 7 - Học toán với OnlineMath

Bài 1: Cho ΔABCΔABC có Aˆ=900A^=900, AB > AC. Vẽ đường cao AH của tam giác ABC. Trên tia HC lấy điểm D sao cho HD = HA. Đường thẳng vuông góc với BC tại D cắt AC tại E. Vẽ EF⊥AHEF⊥AH tại F.a) CMR: EF = DH.b) CMR: AB = AE và tính số đo các góc của tam giác ABE.c) Đường trung trực của đoạn DE cắt BE ở M. Chứng minh các tam giác DME cân và DMB cân.d) Tính AHMˆAHM^ (thừa...
Đọc tiếp

Bài 1: Cho ΔABCΔABC có Aˆ=900A^=900, AB > AC. Vẽ đường cao AH của tam giác ABC. Trên tia HC lấy điểm D sao cho HD = HA. Đường thẳng vuông góc với BC tại D cắt AC tại E. Vẽ EF⊥AHEF⊥AH tại F.
a) CMR: EF = DH.
b) CMR: AB = AE và tính số đo các góc của tam giác ABE.
c) Đường trung trực của đoạn DE cắt BE ở M. Chứng minh các tam giác DME cân và DMB cân.
d) Tính AHMˆAHM^ (thừa nhận EHAˆ+EHBˆ+BHAˆ=3600EHA^+EHB^+BHA^=3600)
Bài 2: Cho tam giác đều ABC. Trên tia AC lấy điểm D (AD>AC) vẽ tam giác đều ADE (B, E thuộc hai nửa mặt phẳng đối nhau bờ AD). Tia EC cắt BD ở M.
a) CMR: BD = CE.
b) Trên tia ME lấy F sao cho MF = MD. CMR tam giác MDF đều.
c) Chứng minh ME = MD + MA, MA = MB + MC
Bài 3: Cho tam giác ABC có Aˆ>1200A^>1200. Phía ngoài tam giác ABC, vẽ các tam giác đều ABD, ACE. Đường thẳng qua D song song với AE và đường thẳng qua E song song với AD cắt nhau tại F.
a) CMR: AD = EF
b) Chứng minh tam giác BFC đều (thừa nhận BACˆ+CAEˆ+EADˆ+DABˆ=3600BAC^+CAE^+EAD^+DAB^=3600)

giải nhanh giúp mình nhé, cảm ơn ạ!

0
10 tháng 7 2019

Em tham khảo nhé!

Câu hỏi của channel Anhthư - Toán lớp 7 - Học toán với OnlineMath