K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
Vì OI _|_ AB tại I, OK _|_ AC tại K. Do đó: \(AI=AK=\frac{a}{2}\)
Trên tia đối của tia IA lấy F sao cho IF=EK
Đặt AD=x, AE=y
Chứng minh được \(DE=\sqrt{x^2+y^2-xy}\)
Ta có: \(\frac{1}{BD}+\frac{1}{CE}=\frac{3}{a}\Rightarrow\frac{1}{a-x}+\frac{1}{a-y}=\frac{3}{a}\)
=> a2-2(x+y)a+3xy=0
Từ gt có: x+y < a; a=x+y+\(\sqrt{x^2+y^2-xy}\)
AI+AK=AD+AE+DE; DI+EK=DE
DF=DE => OI=OH => AB=MN
Từ đó chứng minh BMNC là hình thang cân