Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có
HB là hình chiếu của AB trên BC
HC là hình chiếu của AC trên BC
mà HB<HC
nên AB<AC
=>\(\widehat{ABC}>\widehat{ACB}\)
b: Xét ΔHDC có
DE là đường trung tuyến
CA là đường trung tuyến
DE cắt CA tại F
DO đó: F là trọng tâm của ΔHDC
=>HF là đường trung tuyến ứng với cạnh DC
hay H,F,M thẳng hàng(M là trung điểm của CD)
c:
Ta có: EK//AC
AB\(\perp\)AC
Do đó: EK\(\perp\)AB
Xét ΔEAB có
EK là đường cao
AH là đường cao
EK cắt AH tại P
Do đó: P là trực tâm của ΔABE
Suy ra: BP vuông góc với AE
a) Xét tam giác ABC và tam giác HBA có Góc ABC chungg,góc BHA=góc BAC=90 độ
=> Tam giác ABC đồng dạng với tam giác HBA(gg)=> \(\frac{AB}{HB}=\frac{BC}{AB}\)=> AB^2=BH.BC
b)Tam giác ABC có BF là phân giác góc ABC=>\(\frac{BC}{AB}=\frac{FC}{AF}\)mà \(\frac{AB}{HB}=\frac{BC}{AB}\)=>\(\frac{AB}{BH}=\frac{FC}{AF}\left(1\right)\)
Tam giác ABH có BE là phân giác goc ABH =>\(\frac{BA}{BH}=\frac{AE}{EH}\left(2\right)\)
Từ 1 và 2=>\(\frac{FC}{AF}=\frac{AE}{EH}=>\frac{EH}{AE}=\frac{AF}{FC}\)
Bài 1
A B C M H K 1 a, Xét ΔABM và ΔACB có
\(\left\{{}\begin{matrix}\widehat{BAC}\text{ chung}\\\widehat{ABM}=\widehat{C}\text{(gt)}\end{matrix}\right.\)
⇒ ΔABM ~ ΔACB (g.g)(đpcm)
b, Vì ΔABM ~ ΔACB
⇒ \(\frac{AB}{AC}=\frac{AM}{AB}\)
⇒ AB2 = AM . AC
⇒ AM = \(\frac{AB^2}{AC}=\frac{2^2}{4}=\frac{4}{4}=1\) (cm)
Vậy AM = 1cm
c, Vì ΔABM ~ ΔACB
⇒ \(\widehat{M_1}=\widehat{ABC}\)
⇒ \(\widehat{M_1}=\widehat{ABH}\)
Vì AH ⊥ BC ⇒ \(\widehat{AHB}=90^0\)
AK ⊥ BM ⇒ \(\widehat{AKM}=90^0\)
ΔAHB và ΔAKM có
\(\left\{{}\begin{matrix}\widehat{ABH}=\widehat{M_1}\\\widehat{AHB}=\widehat{AKM}=90^0\end{matrix}\right.\)
⇒ ΔAHB ~ ΔAKM (g.g)
⇒ \(\frac{AB}{AM}=\frac{AH}{AK}\)
⇒ AB . AK = AH . AM (đpcm)
d, Vì ΔABH ~ ΔAMK
⇒ \(\frac{\text{SΔABH}}{\text{SΔAMK}}=\left(\frac{AB}{AM}\right)^2\) (Tỉ số diện tích của 2 tam giác đồng dạng bằng bình phương tỉ số đồng dạng)
⇒ \(\frac{\text{SΔABH}}{\text{SΔAMK}}=\left(\frac{2}{1}\right)^2\)
⇒ \(\frac{\text{SΔABH}}{\text{SΔAMK}}=4\)
⇒ SΔABH = 4SΔAMK (đpcm)
Bạn ơi đề phải là cm góc IHK = 90 độ
Xét tam giác BHA vuông tại H có HI là trung tuyến => HI = 1/2BH = IA => tam giác HIA cân tại I => góc IHA = góc IAH
Tương tự: góc KHA = góc KAH
=> góc IHK = góc IHA + góc KHA = góc IAH + góc KAH = góc BCA = 90 độ
=> ĐPCM