Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M E N F
a, chỉ cần cm ME ko song song với BC
b, Kẻ EF song song với AB
Xét tg ABC có EF // AB => \(\hept{\begin{cases}\frac{BF}{BC}=\frac{AE}{AC}=\frac{1}{4}\left(1\right)\\\frac{AB}{EF}=\frac{AC}{EC}=\frac{4}{3}\end{cases}}\)
Mà M là trung điểm AB nên \(MB=MA=\frac{1}{2}AB\)=>\(\frac{MB}{EF}=\frac{2}{3}\)
Do AB // EF mà M thuộc AB => MB // EF
=> \(\frac{NB}{NF}=\frac{MB}{EF}=\frac{2}{3}\)=>\(\frac{NB}{BF}=2\)(2)
Từ (1) và (2) => \(\frac{NB}{BC}=\frac{1}{2}\)
Câu này chỉ cần áp dụng định lý Ta let:
a. Do E không là trung điểm AC nên ME không song song BC. Vậy ME cắt BC.
b. Kẻ EH // BC, H thuộc AB. Áp dụng định lý Talet: \(\frac{AE}{AC}=\frac{AH}{AB}=\frac{HE}{BC}=\frac{1}{4}\left(1\right)\)
Lại do M là trung điểm AB nên H là trung điểm MA. Áp dụng Talet:
\(\frac{HE}{NB}=\frac{MH}{MB}=\frac{MH}{MA}=\frac{1}{2}\left(2\right)\)
Từ (1) và (2) ta suy ra BC = 2BN.
hình vẽ
vì \(\frac{AM}{MB}\)= \(\frac{AN}{NC}\) nên MN // BC ( định lý ta- let đảo)
MN//BC
áp dụng hệ quả của định lý ta-let ta có
\(\frac{AM}{MB}\)= \(\frac{MK}{MI}\)(1)
\(\frac{AN }{NC}\)= \(\frac{KN}{IC}\) (2)
từ (1) và (2)
=> \(\frac{MK}{MI}\)= \(\frac{KN}{IC}\)
mà Mi = IC
nên MK = KN => K là trung điểm của MN
Ta có MN//BC ( Theo định lí Ta - lét )
=> MK//BI ; KN//IC
=> \(\frac{MK}{BI}=\frac{AM}{AB}\);\(\frac{KN}{IC}=\frac{AN}{AC}\)
MÀ \(\frac{AM}{AB}=\frac{AN}{AC}\) = AN/AC và BI = IC ( tính chất đường trung tuyến )
==> Vậy KM = KN ( ĐPCM )
Ta có:
MN//BC ( Theo định lí Ta - lét )
=> MK//BI và KN//IC
=> MK/BI = AM/AB
KN/IC = AN/AC
Mà AM/AB = AN/AC và BI = IC ( tính chất đường trung tuyến )
=> Vậy KM = KN ( đpcm )
làm bừa thui,ai tích mình mình tích lại
Số số hạng là :
Có số cặp là :
50 : 2 = 25 ( cặp )
Mỗi cặp có giá trị là :
99 - 97 = 2
Tổng dãy trên là :
25 x 2 = 50
Đáp số : 50