\(\le\)60 độ. Chứng minh rằng AB +AC\(\le\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2016

Trước hết bạn cần biết bổ đề sau: " Trong 1 tam giác vuông, có 1 góc bằng 30 độ thì cạnh góc vuông đối diện với góc 30độ bằng nửa cạnh huyền " - phần chứng minh xin nhường lại cho bạn, gợi ý là vẽ thếm trung tuyến ứng với cạnh huyền để chứng minh 
Kẻ BH ⊥ AC tại H. 
Xét tam giác ABH có góc BHA = 90độ (cách kẻ) 
=> góc ABH + góc BAH = 90độ (phụ nhau) => góc ABH = 90độ - góc BAH = 90độ - 60độ = 30độ => góc ABH = 30độ 
Xét tam giác ABH có góc BHA = 90độ và góc ABH = 30độ 
=> Theo bổ đề trên ta có: AH = AB/2 => 2AH = AB (1) 
Áp dụng định lý Py-ta-go ta có: 
AB² = BH² + AH² 
=> BH² = AB² - AH² (2) 
Xét tam giác BHC có góc BHC = 90độ (cách kẻ) 
=> Áp dụng định lý Py-ta-go ta có: 
BC² = BH² + HC² = BH² + (AC - AH)² = BH² + AC² - 2AH.AC + AH² (3) 
Thay (1) và (2) vào (3) ta có: 
BC² = (AB² - AH²) + AC² - AB.AC + AH² 
<=> BC² = AB² - AH² + AC² - AB.AC + AH 
<=> BC² = AB² + AC² - AB.AC 
Kết luận

k  đi 

26 tháng 7 2016

Bạn ơi  đề là góc A lớn hơn hoặc bằng 60

7 tháng 12 2015

Kẻ phân giác Ax cắt BC tại D

Gọi K,H lần lượt là hình chiếu chủa B,C trên Ax

=>  Tam giác KBA vuông tại K có A =30 => BK = AB/2

 tam giác HCA vuông tại H có  A =30 => CH = AC /2

=> AB+AC = 2( BK +CH)   mà BK </ BD ; CH </ CD

=> AB+AC</ 2(BD+CD) 

=> AB +AC </ 2 BC

7 tháng 12 2015

neu B hoac C<A

=>AB hoac AC<BC

=>AC hoac AB> BC

AB+AC<BC [bất đẳng thức trong tam giác]

nếu AB+AC>2BC[ loại vì AC+CB<AB hoac AB+BC<AC trai vs bat dang thuc trong tam giac]

=> AB+AC <  hoac bang 2BC

Vay....

18 tháng 3 2017

ai bt thì giúp mik nha, mik nghĩ ra rùi nhưng sợ sai nên ko giám viết vô bài , ai xong tr mik sẽ

Theo mik là phải chia 3 trường hợp

22 tháng 3 2020

A B C H

kẻ BH _|_ AC

xét tam giác ABH vuông tại H => ^ABH + ^BAH = 90 (đl)

^BAH = 60 (Gt)

=> ^ABH = 30; xét tam giác ABH vuông tại H

=> AH = AB/2 (đl)

=> AB = 2AH                  (1)

Tam giác ABH vuông tại H => HA^2 + HB^2 = AB^2 (pytago)

=> BH^2 = AB^2 - AH^2         (2)

xét tam giác BHC vuông tại H => BC^2 = HB^2 + HC^2 (pytago)

có HC = AC - AH

=> BC^2 = HB^2 + (AC - AH)^2 

=> BC^2 = HB^2 + AC^2 - 2AH.AC + AH^2 và (1)(2)

=> BC^2 = AB^2 - AH^2 + AC^2 - AB.AC + AH^2

=> BC^2 = AB^2 + AC^2 - AB.AC

20 tháng 1 2020

Bài 1: 

A B C I E D H

Vẽ \(IH\) là tia phân giác của \(\widehat{AIC}\)

Xét \(\Delta ABC\) có:

\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)

\(\Rightarrow\widehat{A}+\widehat{C}=180^0-\widehat{B}=180^0-60^0=120^0\)

Ta có: \(AD\) là tia phân giác của \(\widehat{A}\left(1\right)\)

Và: \(CE\) là tia phân giác của \(\widehat{C}\left(2\right)\) 

Từ   \(\left(1\right)\left(2\right)\Rightarrow\widehat{IAC}+\widehat{ICA}=\frac{120^0}{2}=60^0\)

Lại có: \(\widehat{EIA}=\widehat{IAC}+\widehat{ICA}=60^0=\widehat{AIH}\)

Xét \(\Delta EAI\) và \(\Delta HAI\) có:

\(\widehat{EAI}=\widehat{HAI}\left(AD-là-tia-p.giác-của\widehat{A}\right)\)

\(\widehat{AIE}=\widehat{AIH}\left(cmt\right)\)

\(AI\) chung

\(\Rightarrow\Delta AIE=\Delta AIH\left(g-c-g\right)\)

\(\Rightarrow IE=IH\left(1\right)\)

Chứng minh tương tự \(\Delta CHI=\Delta CDI\left(g-c-g\right)\Rightarrow ID=IH\left(2\right)\)

Từ \(\left(1\right)\left(2\right)\Rightarrow IE=ID\)

\(\Rightarrow\Delta IDE\) cân tại \(I\left(đpcm\right)\)

21 tháng 1 2020

2. A B C H K D E

Trên cạnh BC lấy điểm E sao cho BE = BD => \(\Delta\)DBE cân tại B (1)

=> BD = BE 

Ta có: BD là phân giác ^ABC  => ^DBE = 40\(^{^o}\): 2 = 20\(^o\)(2)

(1) ; (2) => ^BDE = ^DED = ( 180\(^o\)- 20\(^o\)) : 2 = 80\(^o\)

=> ^DEC = 180\(^o\)- 80\(^o\)=100\(^o\)

Xét \(\Delta\)DEC có: ^EDC = 180\(^o\)- ^DEC - ^DCE = 180\(^o\)-100\(^o\)-40\(^o\)=40\(^o\)

=> \(\Delta\)DEC cân tại E => DE = EC (3)

Từ D kẻ vuông góc với BC tại H và BA tại K.

D thuộc đường phân giác ^ABC  ( theo t/c đường phân giác ) => DK = DH 

Vì ^BAC = ^DEC = 100\(^o\)=> ^KAD = ^HED 

=> \(\Delta\)KAD = \(\Delta\)HED ( cạnh góc vuông - góc nhọn )

=> DA = DE (4)

Từ (3) ; (4) => DA = EC 

Vậy BC = BE + EC = BD + AD