Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trước hết bạn cần biết bổ đề sau: " Trong 1 tam giác vuông, có 1 góc bằng 30 độ thì cạnh góc vuông đối diện với góc 30độ bằng nửa cạnh huyền " - phần chứng minh xin nhường lại cho bạn, gợi ý là vẽ thếm trung tuyến ứng với cạnh huyền để chứng minh
Kẻ BH ⊥ AC tại H.
Xét tam giác ABH có góc BHA = 90độ (cách kẻ)
=> góc ABH + góc BAH = 90độ (phụ nhau) => góc ABH = 90độ - góc BAH = 90độ - 60độ = 30độ => góc ABH = 30độ
Xét tam giác ABH có góc BHA = 90độ và góc ABH = 30độ
=> Theo bổ đề trên ta có: AH = AB/2 => 2AH = AB (1)
Áp dụng định lý Py-ta-go ta có:
AB² = BH² + AH²
=> BH² = AB² - AH² (2)
Xét tam giác BHC có góc BHC = 90độ (cách kẻ)
=> Áp dụng định lý Py-ta-go ta có:
BC² = BH² + HC² = BH² + (AC - AH)² = BH² + AC² - 2AH.AC + AH² (3)
Thay (1) và (2) vào (3) ta có:
BC² = (AB² - AH²) + AC² - AB.AC + AH²
<=> BC² = AB² - AH² + AC² - AB.AC + AH
<=> BC² = AB² + AC² - AB.AC
Kết luận
k đi
Kẻ phân giác Ax cắt BC tại D
Gọi K,H lần lượt là hình chiếu chủa B,C trên Ax
=> Tam giác KBA vuông tại K có A =30 => BK = AB/2
tam giác HCA vuông tại H có A =30 => CH = AC /2
=> AB+AC = 2( BK +CH) mà BK </ BD ; CH </ CD
=> AB+AC</ 2(BD+CD)
=> AB +AC </ 2 BC
neu B hoac C<A
=>AB hoac AC<BC
=>AC hoac AB> BC
AB+AC<BC [bất đẳng thức trong tam giác]
nếu AB+AC>2BC[ loại vì AC+CB<AB hoac AB+BC<AC trai vs bat dang thuc trong tam giac]
=> AB+AC < hoac bang 2BC
Vay....
ai bt thì giúp mik nha, mik nghĩ ra rùi nhưng sợ sai nên ko giám viết vô bài , ai xong tr mik sẽ
Theo mik là phải chia 3 trường hợp
A B C H
kẻ BH _|_ AC
xét tam giác ABH vuông tại H => ^ABH + ^BAH = 90 (đl)
^BAH = 60 (Gt)
=> ^ABH = 30; xét tam giác ABH vuông tại H
=> AH = AB/2 (đl)
=> AB = 2AH (1)
Tam giác ABH vuông tại H => HA^2 + HB^2 = AB^2 (pytago)
=> BH^2 = AB^2 - AH^2 (2)
xét tam giác BHC vuông tại H => BC^2 = HB^2 + HC^2 (pytago)
có HC = AC - AH
=> BC^2 = HB^2 + (AC - AH)^2
=> BC^2 = HB^2 + AC^2 - 2AH.AC + AH^2 và (1)(2)
=> BC^2 = AB^2 - AH^2 + AC^2 - AB.AC + AH^2
=> BC^2 = AB^2 + AC^2 - AB.AC
Bài 1:
A B C I E D H
Vẽ \(IH\) là tia phân giác của \(\widehat{AIC}\)
Xét \(\Delta ABC\) có:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
\(\Rightarrow\widehat{A}+\widehat{C}=180^0-\widehat{B}=180^0-60^0=120^0\)
Ta có: \(AD\) là tia phân giác của \(\widehat{A}\left(1\right)\)
Và: \(CE\) là tia phân giác của \(\widehat{C}\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\Rightarrow\widehat{IAC}+\widehat{ICA}=\frac{120^0}{2}=60^0\)
Lại có: \(\widehat{EIA}=\widehat{IAC}+\widehat{ICA}=60^0=\widehat{AIH}\)
Xét \(\Delta EAI\) và \(\Delta HAI\) có:
\(\widehat{EAI}=\widehat{HAI}\left(AD-là-tia-p.giác-của\widehat{A}\right)\)
\(\widehat{AIE}=\widehat{AIH}\left(cmt\right)\)
\(AI\) chung
\(\Rightarrow\Delta AIE=\Delta AIH\left(g-c-g\right)\)
\(\Rightarrow IE=IH\left(1\right)\)
Chứng minh tương tự \(\Delta CHI=\Delta CDI\left(g-c-g\right)\Rightarrow ID=IH\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\Rightarrow IE=ID\)
\(\Rightarrow\Delta IDE\) cân tại \(I\left(đpcm\right)\)
2. A B C H K D E
Trên cạnh BC lấy điểm E sao cho BE = BD => \(\Delta\)DBE cân tại B (1)
=> BD = BE
Ta có: BD là phân giác ^ABC => ^DBE = 40\(^{^o}\): 2 = 20\(^o\)(2)
(1) ; (2) => ^BDE = ^DED = ( 180\(^o\)- 20\(^o\)) : 2 = 80\(^o\)
=> ^DEC = 180\(^o\)- 80\(^o\)=100\(^o\)
Xét \(\Delta\)DEC có: ^EDC = 180\(^o\)- ^DEC - ^DCE = 180\(^o\)-100\(^o\)-40\(^o\)=40\(^o\)
=> \(\Delta\)DEC cân tại E => DE = EC (3)
Từ D kẻ vuông góc với BC tại H và BA tại K.
D thuộc đường phân giác ^ABC ( theo t/c đường phân giác ) => DK = DH
Vì ^BAC = ^DEC = 100\(^o\)=> ^KAD = ^HED
=> \(\Delta\)KAD = \(\Delta\)HED ( cạnh góc vuông - góc nhọn )
=> DA = DE (4)
Từ (3) ; (4) => DA = EC
Vậy BC = BE + EC = BD + AD