K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2019

a, xét tam giác BMH và tam giác BDH có : BM chung

HM = HD (gt)

góc BHM = góc BHD = 90 

=> tam giác BMH = tam giác BDH (2cgv)

=> BM = BD (đn)

=> tam giác BDM cân tại B (đn)

b, tam giác BMH = tam giác BDH (câu a)

=> góc MBH = góc DBH (đn)

xét tam giác BMC và tam giác BDC có : BC chung

BM = BD (câu a)

=> tam giác BMC =  tam giác BMD (c - g - c)

=> góc BMC = góc BDC (đn)

29 tháng 4 2019

a,xét hai tam giác HBM và HBD(có 2 góc H=90 độ)

Ta có:BH cạnh chung,HM=HD

suy ra tam giác HBM= tam giác HBD (cgv-cgv)

suy ra BM=BD (2 cạnh tương ứng)

xét tam giác BMD có BM=BD suy ra tam giác BMD cân tại B.

b,theo câu a góc MBC =góc DBC (2 góc tương ứng)

xét tam giác MBC và tam giác DBC

TA CÓ;BM=BD,góc MBC=DBC,BC cạnh chung

uy ra tam giác BMC= tam giác DBC(C-G-C)

suy ra góc BMC=BDC (2 góc tương ứng)

c,áp dụng định lý pytago

xét tam giác AHC có HC^2=AC^2-AH^2=10^2

suy ra HC =10

xét tam giác HMC có MH^2=MC^2-HC^2=CD^2-HC^2=56,25

suy ra MH=7,5

suy ra tam giác HMC có diện tích là 7,5*10/2=37,5

29 tháng 4 2019

a)Xét\(\Delta BMH\)\(\Delta BDH\)có:

BM là cạnh chung

\(\widehat{BHM}=\widehat{BHD}\left(=90^o\right)\)

MH=DH(GT)

Do đó:\(\Delta BMH=\text{​​}\text{​​}\Delta BDH\)(c-g-c)

\(\Rightarrow BM=BD\)(2 cạnh t/ứ)

Xét\(\Delta BDM\)có:\(BM=BD\left(cmt\right)\)

Do đó:\(\Delta BDM\)cân tại B(Định ngĩa\(\Delta\)cân)

b)Vì\(\Delta BMH=\text{​​}\text{​​}\Delta BDH\)(cm câu a) nên\(\widehat{MBH}=\widehat{DBH}\)(2 góc t/ứ)

Xét\(\Delta BMC\)\(\Delta BDC\)có:

BC là cạnh chung

\(\widehat{MBC}=\widehat{DBC}\left(cmt\right)\)

BM=BD(cm câu a)

Do đó:\(\Delta BMC=\Delta BDC\)(c-g-c)

\(\Rightarrow\widehat{BMC}=\widehat{BDC}\)(2 góc t/ứ)

c)Xét\(\Delta AHC\)có:\(AC^2=AH^2+HC^2\)

hay\(26^2=24^2+HC^2\)

\(\Rightarrow HC^2=26^2-24^2=676-576=100\)

\(\Rightarrow HC=\sqrt{100}=10\left(cm\right)\)

\(\Delta BMC=\Delta BDC\)nên\(MC=DC=12,5\left(cm\right)\)

Xét\(\Delta MCH\)có:\(MC^2=MH^2+CH^2\)
hay\(12,5^2=MH^2+10^2\)

\(\Rightarrow MH^2=12,5^2-10^2=156,25-100=56,25\)

\(\Rightarrow MH=\sqrt{56,25}=7,5\left(cm\right)\)

DT của\(\Delta MCH\)là:\(S_{\Delta MCH}=\frac{1}{2}.a.h=\frac{1}{2}.10.7,5=5.7,5=37,5\left(cm^2\right)\)

   Bài 1: Cho tam giác ABC với AB=AC. Lấy I là trung điểm của BC . Trên tia BC lấy điểm N , trên tia CB lấy điểm M sao cho CN=BM . a) Chứng minh góc ABI=góc ACI và AI là tia phân giác của góc BACb) Chứng minh AM=ANc) Chứng minh AI vuông góc với BC  Bài 2 : Cho tam giác vuông tại A có góc C=30 độa) Tính góc Bb) Vẽ tia phân giác của góc B cắt AC tại Dc) Trên cạnh BC lấy điểm M sao cho BM...
Đọc tiếp

   Bài 1: Cho tam giác ABC với AB=AC. Lấy I là trung điểm của BC . Trên tia BC lấy điểm N , trên tia CB lấy điểm M sao cho CN=BM . 

a) Chứng minh góc ABI=góc ACI và AI là tia phân giác của góc BAC

b) Chứng minh AM=AN

c) Chứng minh AI vuông góc với BC

  Bài 2 : Cho tam giác vuông tại A có góc C=30 độ

a) Tính góc B

b) Vẽ tia phân giác của góc B cắt AC tại D

c) Trên cạnh BC lấy điểm M sao cho BM =AB . Chứng minh : tam giác ABD=tam giác MBD

D qua B vẽ đường thẳng xy vuông góc tại BA . Từ A kẻ đường thẳng song song với BD cắt xy ở A . Chứng minh: AK=BD

Tính góc AKB

  Bài 3: Cho tam giác ABC vuông ở A và AB=AC . Gọi K là trung điểm của BC

a) Chứng minh tam giác AKB=tam giác AKC

b) Chứng minh AK vuông góc với BC 

c) Từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E. Chứng minh EC//AK

1
21 tháng 1 2017

Bài 1:

a)+ Vì AB = ACNÊN

==>Tam giác ABC cân tại A

==>góc ABI = góc ACI

+ Xét tam giác ABI và tam giác ACI có:

               AI là cạch chung

               AB = AC(gt)

               BI = IC ( I là trung điểm của BC)

Vậy tam giác ABI = tam giác ACI (c.c.c)

==> góc BAI = góc CAI ( 2 góc tương ứng )

==>AI là tia phân giác của góc BAC

b)

Xét tam giác BAM và tam giác BAN có:

         AB = AC (gt)

        góc B = góc C (cmt)

         BM = CN ( gt )

    Vậy tam giác BAM = tam giác CAN (c.g.c)

==> AM = AN (2 cạnh tương ứng)

c)

vì tam giác BAI = tam giác CAI (cmt)

==>góc AIB = góc AIC (2 góc tương ứng) 

Mà góc AIB+ góc AIC = 180độ ( kề bù)

nên AIB=AIC=180:2=90

==>AI vuông góc với BC

21 tháng 7 2019

a) Xét tam giác DBM và tam giác ABM có:

BM: là cạnh huyền (vừa cạnh chung)

^MDB = ^MAB = 90o

^DBM = ^ABM (giả thiết do BM là tia phân giác)

\(\Rightarrow\)\(\Delta\)DBM = \(\Delta\) ABM (cạnh huyền - góc nhọn)

\(\Rightarrow\) AB = BD

b) Xét \(\Delta\) ABC và \(\Delta\) DBE có:

AB = BD (CMT)

^B chung

^BAC = ^EDB = 90o

\(\Rightarrow\) \(\Delta\) ABC = \(\Delta\) DBE (cạnh góc vuông - góc nhọn kề cạnh ấy)

c) (không chắc nha). Từ đề bài suy ra ^NHM = ^NKM = 90o (kề bù với ^DHM = ^AKM = 90o, giả thiết)

Từ đó, ta có N cách đều hai tia MH, MK nên nằm trên đường phân ^HMK hay MN là tia phân giác ^HMK.

d)(không chắc luôn:v) Ta sẽ chứng minh BN là tia phân giác ^ABC.

Thật vậy, từ N, hạ NF vuông góc BC, hạ NG vuông góc với AB.

Đến đấy chịu, khi nào nghĩ ra tính tiếp.

a)Xét ∆ vuông BAM và ∆ vuông BDM ta có : 

BM chung 

ABM = DBM ( BM là phân giác) 

=> ∆BAM = ∆BDM ( ch-gn)

=> BA = BD 

AM = MD

b)Xét ∆ vuông ABC và ∆ vuông DBE ta có : 

BA = BD 

B chung 

=> ∆ABC = ∆DBE (cgv-gn)

c) Xét ∆ vuông AKM và ∆ vuông DHM ta có : 

AM = MD( cmt)

AMK = DMH ( đối đỉnh) 

=> ∆AKM = ∆DHM (ch-gn)

=> MAK = HDM ( tương ứng) 

Xét ∆AMN và ∆DNM ta có : 

AM = MD 

MN chung 

MAK = HDM ( cmt)

=> ∆AMN = ∆DNM (c.g.c)

=> DNM = ANM ( tương ứng) 

=> MN là phân giác AND 

d) Vì MN là phân giác AND 

=> M , N thẳng hàng (1)

Vì BM là phân giác ABC 

=> B , M thẳng hàng (2)

Từ (1) và (2) => B , M , N thẳng hàng 

31 tháng 3 2016

A B C E N I D M O 1 2 2 1 2 3 1 3 1

a) ta có tam giác abc cân tại A suy ra B=C3

C3=C1(2 góc đđ) suy ra B=C1

xét 2 tam giác vuông MBD và NCE

B=C1(cmt)

BD=CE(gt)

D1=E=90 độ

suy ra tam giácMBD=NCE(g.c.g)

suy ra MD=NE

31 tháng 3 2016

b) theo câu a, ta có:MD=NE

I1=I2(2 góc đđ)

DMI=90-I1

ENI=90-I2

suy ra DMI=ENI
xét tam giác MDI và tam giác NIE

MD=NE( theo câu a)

DMI=ENI(cmt)

MDI=NEI=90

suy ra tam giác MDI=NIE(g.c.g)

suy ra IM=IN suy ra I là trung điểm của MN