Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
D A E B C
a, Vì góc A + góc B + góc C = 180 độ
=> góc C = 180 độ - góc A - góc B = 180 độ - 80 độ - 50 độ = 50 độ
=> góc B = góc C
=> t/g ABC cân
b, Ta có: góc ADE = góc ABC
góc AED = góc ACB
Mà góc ABC = góc ACB (vì t/g ABC cân)
=> góc ADE = góc AED
=> t/g ADE cân
Bài 1:
Tam giác MNP có: \(\widehat{M}=40^o;\widehat{N}=100^o\)
Tổng số đo 3 góc của 1 tam giác là 180o, ta được:
\(\widehat{M}+\widehat{N}+\widehat{P}=180^o\\ \Leftrightarrow40^o+100^o+\widehat{P}=180^o\\ \Leftrightarrow140^o+\widehat{P}=180^o\\ \Leftrightarrow\widehat{P}=180^o-140^o=40^o\)
Vì: \(\widehat{M}=\widehat{P}=40^o\) => Tam giác MNP là tam giác cân tại N (ĐPCM)
* Theo mình thì phần a) Góc A = 90 độ sẽ hợp lý hơn chứ. Vậy nên mình sẽ làm theo cả hai góc A 90 độ và 80 độ nhé ( Nhưng bài của mình phần b) sẽ theo góc A = 90 độ )
a)
Góc A = 80 độ thì sẽ có thể tam giác ABC là tam giác cân, tam giác ⊥ tại B hoặc C, tam giác ABC là tam giác tù hoặc tam giác nhọn
Góc A = 90 độ thì tam giác ABC là tam giác vuông tại A
b)
Theo phần a), ta có: Tam giác ABC cân tại A
=> Góc B = góc C = ( 180 độ - 70 độ ) : 2 = 55 độ
A B C M I
Lấy điểm I nằm ngoài tam giác ABC sao cho tam giác IBC đều
Vì tam giác ABC vuông cân tại A \(\Rightarrow\)\(\widehat{ABC}=45^0\)
Ta có: \(\widehat{ABM}+\widehat{MBC}=\widehat{ABC}\)
=> \(30^0+\widehat{MBC}=45^0\)
=> \(\widehat{MBC}=45^0-30^0\)
=> \(\widehat{MBC}=15^0\)
Vì tam giác IBC đều \(\Rightarrow\)\(\widehat{IBC}=\widehat{BIC}=60^0\)
Ta có: \(\widehat{IBA}+\widehat{ABC}=\widehat{IBC}\)
=>\(\widehat{IBA}+45^0=60^0\)
=> \(\widehat{IBA}=60^0-45^0\)
=. \(\widehat{IBA}=15^0\)
Xét tam giác ABI và tam giác ACI có;
AB = AC ( tg ABC vuông cân tại A)
IB = IC ( tg IBC đều)
IA chung
Do đó tam giác ABI = tam giác ACI ( c-c-c)
=> \(\widehat{AIB}=\widehat{AIC}\)( 2 góc tương ứng)
=> IA là tia phân giác của \(\widehat{BIC}\)
=> \(\widehat{AIB}=\widehat{AIC}=\frac{\widehat{BIC}}{2}=\frac{60^o}{2}=30^o\)
Xét tam giác ABI và tam giác MBC có:
\(\widehat{ABI}=\widehat{MBC}=15^o\)
BI = BC (tg IBC đều)
\(\widehat{AIB}=\widehat{MCB}=30^o\)
Do đó tam giác ABI = tam giác MBC (g-c-g)
=> BA = BM (2 cạnh tương ứng)
a: Xét ΔABC vuông tại B và ΔAED vuông tại E có
AC=AD
\(\widehat{A}\) chung
Do đó: ΔABC=ΔAED
b: Đề sai rồi bạn
b2 :
a, xét tam giác ABD và tam giác ACE có: góc A chung
AB = AC do tam giác ABC cân tại A (gt)
góc ADB = góc AEC = 90
=> tam giác ABD = tam giác ACE (ch-cgv)
b, tam giác ABD = tam giác ACE (câu a)
=> góc ABD = góc ACE (đn)
góc ABC = góc ACB do tam giác ABC cân tại A (gt)
góc HBC = góc ABC - góc ABD
góc HCB = góc ACB - góc ACE
=> góc HBC = góc HCB
=> tam giác HBC cân tại H (Dh)
Xét tam giác ABC, có:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
=> \(80^o+50^o+\widehat{C}=180^o\)
=> \(\widehat{C}=50^o\)
Ta có:
\(\widehat{B}=50^o\)
\(\widehat{C}=50^o\)
Suy ra: \(\widehat{B}=\widehat{C}\)
=> Tam giác ABC cân tại A.
Góc C bằng :
180o-80o-500=50o
vì Góc C =Góc B nên suy ra Tam giác ABC là tam giác cân