K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2020

a) Vì \(\Delta ABD\)\(\Delta ACE\) đều (gt).

=> \(\left\{{}\begin{matrix}AD=AB\\AC=AE\\\widehat{DAB}=\widehat{EAC}=60^0\end{matrix}\right.\) (tính chất tam giác đều).

\(\widehat{DAB}=\widehat{EAC}\left(cmt\right)\)

=> \(\widehat{DAB}+\widehat{BAC}=\widehat{EAC}+\widehat{BAC}\)

=> \(\widehat{DAC}=\widehat{BAE}.\)

Xét 2 \(\Delta\) \(ADC\)\(ABE\) có:

\(AD=AB\left(cmt\right)\)

\(\widehat{DAC}=\widehat{BAE}\left(cmt\right)\)

\(AC=AE\left(cmt\right)\)

=> \(\Delta ADC=\Delta ABE\left(c-g-c\right)\)

=> \(DC=BE\) (2 cạnh tương ứng).

Chúc bạn học tốt!

7 tháng 1 2020
https://i.imgur.com/QOwPDxP.jpg
12 tháng 4 2019

A B C P E D Q F R

            ( Hình ko chính xác đâu nha )

                                CM

Vẽ về phía ngoài tam giác ABC dựng tam giác đều ACQ và tam giác RBC cân tại R sao cho \(\widehat{BRC}=120^0\)

\(\Rightarrow\hept{\begin{cases}DB=DC\\RB=RC\end{cases}}\)

\(\Rightarrow DR\)là đường trung trực BC ( tc)

          mà tam giác DBC cân tại D ( gt)

\(\Rightarrow DR\)là phân giác của \(\widehat{BDC}\left(tc\right)\)

\(\Rightarrow\widehat{BDR}=\frac{1}{2}\widehat{BDC}=60^0\)

Ta có: \(\widehat{DBR}=\widehat{DBC}+\widehat{RBC}\left(h.ve\right)\)

                      \(=30^0+30^0\)

                      \(=60^0\)mà BD = BR (cmt)

\(\Rightarrow\Delta BDR\)là tam giác đều ( dấu hiệu nhận biết )

Vì \(\Delta APB\)đều ( gt)

\(\Rightarrow BP=BA\left(đn\right)\)

Ta có: \(\widehat{PBD}=\widehat{PBA}+\widehat{ABD}\left(h.ve\right)\)

                       \(=60^0+\widehat{ABD}\left(1\right)\)

Lại có: \(\widehat{ABR}=\widehat{DBR}+\widehat{ABD}\left(h.ve\right)\)

                       \(=60^0+\widehat{ABD}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\widehat{PBD}=\widehat{ABR}\)

 Xét \(\Delta BPD\)và \(\Delta BAR\)có:

       \(\hept{\begin{cases}\widehat{PBD}=\widehat{ABR}\left(cmt\right)\\PB=BA\left(cmt\right)\\BD=BR\left(cmt\right)\end{cases}\Rightarrow\Delta BPD=\Delta BAR\left(c-g-c\right)}\)

\(\Rightarrow\hept{\begin{cases}DP=RA\left(2canhtuongung\right)\left(3\right)\\\widehat{BDP}=\widehat{BRA}\left(2goctuongung\right)\end{cases}}\)

CM tương tự ta có \(\Delta CRA=\Delta CDQ\left(c-g-c\right)\)( bạn tự CM nhé nó tương tự )

\(\Rightarrow\hept{\begin{cases}DQ=RA\left(2canhtuongung\right)\left(4\right)\\\widehat{QDC}=\widehat{ARC}\left(2goctuongung\right)\end{cases}}\)

Từ (3) và (4) \(\Rightarrow DP=DQ=RA\)

Ta có: \(\widehat{PDQ}=360^0-\widehat{BDC}-\left(\widehat{PDB}+\widehat{QDC}\right)\)

   mà \(\widehat{BDP}=\widehat{BRA};\widehat{QDC}=\widehat{ARC}\left(cmt\right)\)

\(\Rightarrow\widehat{PDQ}=360^0-\widehat{BDC}-\left(\widehat{BRA}+\widehat{CRA}\right)\)

                \(=360^0-\widehat{BDC}-\widehat{BRC}\)

                \(=360^0-120^0-120^0\)

               \(=120^0\)

       

(Chỗ này mình hướng dẫn bạn tự làm típ  nhé)

từ đó tam giác DPQ cân tại D và góc PDQ=1200 . Kết hợp với giả thiết tam giác DEF cân tại D có góc EDF=1200

\(\Rightarrow\Delta DFP=\Delta DEQ\left(c-g-c\right)\)

\(\Rightarrow EQ=FP\left(2canhtuongung\right)\)

Dễ thấy EQ=EC nên PF=CE.

     

12 tháng 4 2019

mình hiểu rồi thanks bạn nhiều 

27 tháng 1 2019

tu ve hinh : 

tamgiac ACE vuong can tai A => AE = AC va goc EAC = 90 do (dn)                     (3)

tamgiac ABD vuong can tai A => AD = AB va goc BAD = 90 do (dn)                     (4)

goc EAC + goc CAB = goc EAB                      (1)

goc DAB + goc BAC = goc DAC                      (2)

(1)(2) => goc EAB = goc DAC                                                                                 (5)

(3)(4)(5) => tamgiac AEB = tamgiac ACD (c - g - c)

=> EB = CD (dn)

10 tháng 2 2022

b1 

a) CM tam giác chứaHB và chứa HC = nhau

b) CM tam giác chứa 2 góc A = nhau

21 tháng 1 2019

A B C D E

Giải :

a)xét t/giác ABC có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)

=> \(\widehat{B}=180^0-\widehat{A}-\widehat{C}=180^0-60^0-40^0=80^0\)

Do DE // BC => \(\widehat{B}+\widehat{BED}=180^0\)(trong cùng phía)

=> góc BED = 1800 - góc B = 1800 - 800 = 1000

Xét t/giác BCD có góc DBC + góc C + góc BDC = 1800 (tổng 3 góc của 1 t/giác)

=> góc DBC = 1800 - góc C - góc BDC = 1800 - 1200 - 400 = 200

Do DE // BC => góc CBD = góc BDE (so le trong)

Mà góc DBC = 200 => góc BDE = 200

b) Ta có: góc ABD + góc DBC = 800

=> góc ABD = 800 - góc DBC = 800 - 200 = 600 (1)

Do DF là tia p/giác của góc BDC nên:

góc BDF = góc FDC = góc  BDC/2 = 1200/2 = 600 (2)

Mà góc ABD và góc BDF ở vị trí so le trong (3)

từ (1);(2);(3) => DF // AB

c) Xét t/giác EBD và t/giác FDB

có góc EBD = gióc BDF = 600 (cmt)

    BD : chung

góc EDB = góc DBF = 200 (cmt)

=> t/giác EBD = t/giác FDB (g.c.g)

=> DF = BE (hai cạnh tương ứng)