Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tự vẽ
b) Vì CI là phân giác ACB
=> ACI = BCI = \(\frac{60°}{2}\)= 30°
Vì IE // BC (gt)
=> ICB = EIC = 30° ( so le trong)
d) Vì DE//BC (gt)
=> AED = ACB = 60° ( đồng vị)
Xét ∆AIE ta có :
AIE + AEI + IAE = 180°
=> IAK = 180° - 90° - 60° = 30°
Ta có :
AEI = KEC = 60° ( đối đỉnh)
Xét ∆EKC ta có :
EKC + KCE + KEC = 180°
=> KCE = 180° - 90° - 60° = 30°
=> EAI = KCE = 30°
Mà 2 góc này ở vị trí so le trong
=> AH//KC
e) Xét ∆AHC ta có :
ACH + CAH + AHC = 180°
=> CAH = 180° - 90° - 60° = 30°
pham vu anh tuan oi ban co the ve hinh va viet gia thiet cho mik dc ko .lm on!!!
Ta có :
\(AB< AC\Rightarrow\)Góc C < Góc B ( quan hệ góc đối diện với cạnh lớn hơn trong tam giác )
Xét tam giác BHA vuông tại H
=> Góc B + Góc BAH = 90 độ ( 1 )
Xét tam giác HAC vuộng tại H
=> Góc C + Góc CAH = 90 độ ( 2 )
Từ ( 1 ) ; ( 2 )
=> Góc B + Góc BAH = Góc C + Góc CAH
mà Góc C < Góc B
=> Góc BAH < Góc CAH
Chúc bạn học tốt !!!
a: Xét ΔABC có \(\widehat{B}>\widehat{C}\)
nên AB<AC
Xét ΔABC có AB<AC
mà HB là hình chiếu của AB trên BC
và HC là hình chiếu của AC trên BC
nên HB<HC
b: Xét ΔAHC vuông tại H và ΔDHC vuông tại H có
CH chung
HA=HD
Do đo; ΔAHC=ΔDHC
c: Xét ΔACB và ΔDCB có
CA=CD
\(\widehat{ACB}=\widehat{DCB}\)
CB chung
Do đó: ΔACB=ΔDCB
Suy ra: \(\widehat{BAC}=\widehat{BDC}=90^0\)
a: Xét ΔABC có ˆB>ˆCB^>C^
nên AB<AC
Xét ΔABC có AB<AC
mà HB là hình chiếu của AB trên BC
và HC là hình chiếu của AC trên BC
nên HB<HC
b: Xét ΔAHC vuông tại H và ΔDHC vuông tại H có
CH chung
HA=HD
Do đo; ΔAHC=ΔDHC
c: Xét ΔACB và ΔDCB có
CA=CD
ˆACB=ˆDCBACB^=DCB^
CB chung
Do đó: ΔACB=ΔDCB
Suy ra: ˆBAC=ˆBDC=900
a, gọi I là giao điểm của AH và BK
xét tam giácABI và tam giác HBI có
BI cạnh chung
\(\widehat{ABI}\)=\(\widehat{HBI}\)(gt)
\(\Rightarrow\)tam giác ABI= tam giác HBI (cạnh góc vuông-góc nhọn)
suy raBA=BH
b, xét tam giác ABK và tam giác HBK có
AB=BH
\(\widehat{ABK}\)=\(\widehat{HBK}\)(gt)
BK cạnh chung
suy ra tam giác ABK=tam giac HBK(c.g.c)
\(\Rightarrow\)\(\widehat{A}\)=\(\widehat{BHK}\)=90 độ suy ra tam giác BHK vuông
c,vì AB=BH nên tam giác ABH là tam giác cân tại B
Bài 2.
Tam giác BHC vuông tại H
=> \(\widehat{CBH}=90^o-\widehat{BCH}\)
=> 2\(\widehat{CBH}=180^o-2.\widehat{BCH}=180^o-2.\widehat{BCA}\)(1)
Ta lại có: \(\widehat{BAC}=180^o-\left(\widehat{ABC}+\widehat{BCA}\right)=180^o-2.\widehat{BCA}\)(2)vì tam giác ABC cân tại A
Từ (1), (2)=> dpcm
a) Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)
\(\Rightarrow\widehat{ABC}+\widehat{ACB}=90^o\)
\(\Rightarrow60^o+\widehat{ACB}=90^o\)
\(\Rightarrow\widehat{ACB}=90^o-60^o=30^o\)
b) Xét \(\Delta ABH\)và \(\Delta KBH\)có:
AB = BK (gt)
BH là cạnh chung
AH = KH (H là trung điểm của AK)
\(\Rightarrow\Delta ABH=\Delta KBH\left(c.c.c\right)\)
\(\Rightarrow\widehat{AHB}=\widehat{KHB}\)(2 góc tương ứng)
Mà \(\widehat{AHB}+\widehat{KHB}=180^o\)(kề bù)
\(\Rightarrow\widehat{AHB}=\widehat{KHB}=\frac{180^o}{2}=90^o\)
\(\Rightarrow AK\perp BH\)hay \(HK\perp BI\)
c)
Hình vẽ:
A B D H D
Giải:
Xét tam giác ABH và tam giác DBH, ta có:
\(\widehat{AHB}=\widehat{DHB}=90^0\)
\(HA=HD\left(gt\right)\)
HB là cạnh chung
\(\Rightarrow\Delta ABH=\Delta DBH\) (Hai cạnh góc vuông)
Lại xét tam giác ACH và tam giác DCH, ta có:
\(\widehat{AHC}=\widehat{DHC}=90^0\)
\(HA=HD\left(gt\right)\)
HC là cạnh chung
\(\Rightarrow\Delta ACH=\Delta DCH\) (Hai cạnh góc vuông)
Chúc bạn học tốt!
Xét ΔABC có: AB < AC
\(\Rightarrow\widehat{ABC}>\widehat{ACB}\)(định lí)
Xét ΔABH vuông tại H:
\(\widehat{ABH}+\widehat{BAH}=90^o\)(phụ nhau)
\(\Rightarrow\widehat{ABH}=90^o-\widehat{BAH}=90^o-60^o=30^o\)