K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2016

Ta có hình vẽ:

A B C D H E d

Vì BD là phân giác của ABC nên \(ABD=CBD=\frac{ABC}{2}\)

Vì ABC vuông góc tại A nên góc A = 90o

Xét Δ ABC có: ABC + ACB = 90o (tính chất của Δ vuông)

=> ABC = 90o - ACB

=> \(\frac{ABC}{2}=\frac{90^o-ACB}{2}\)

=> CBD = 45o - \(\frac{ACB}{2}\)

\(CH\perp DE\) nên CHD = 90o

Xét Δ BHC có: HBC + BCH = 90o (tính chất của Δ vuông)

=> 45o - \(\frac{ACB}{2}\) + BCH = 90o

=> BCH - \(\frac{ACB}{2}\) = 45o

=> BCH - \(\frac{ACB}{2}\) = \(\frac{BCE}{2}\) (vì BCE = 90o)

=> BCH \(=\frac{BCE+ACB}{2}=\frac{2.ACB+DCE}{2}=ACB+\frac{DCE}{2}\)

=> BCH - ACB = \(\frac{DCE}{2}\)

=> \(DCH=\frac{DCE}{2}\)

=> CH là tia phân giác của góc DCE (đpcm)

1 tháng 11 2016

bn ơi, bn k trả lời sớm, thầy mik chữa bài và mik nộp bài mất tiêu r khocroi

Bài 1 : Cho xOy có Oz là tia phân giác, M là điểm bất kì thuộc tia Oz. Qua M kẻ đường thẳng a vuông góc với Ox tại a cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D. Chứng minh tam giác AOM bằng tam giác BOM  ?Bài 2 : Cho tam giác ABC có góc A = 90* và đường phân giác BH (H thuộc AC). Kẻ HM vuông góc với BC (M thuộc BC). Gọi N là giao điểm của AB và MH. Chứng minh tam giác ABH...
Đọc tiếp

Bài 1 : Cho xOy có Oz là tia phân giác, M là điểm bất kì thuộc tia Oz. Qua M kẻ đường thẳng a vuông góc với Ox tại a cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D. Chứng minh tam giác AOM bằng tam giác BOM  ?

Bài 2 : Cho tam giác ABC có góc A = 90* và đường phân giác BH (H thuộc AC). Kẻ HM vuông góc với BC (M thuộc BC). Gọi N là giao điểm của AB và MH. Chứng minh tam giác ABH bằng tam giác MBH, tam giác ACE= tam giác AKE?

Bài 3: Cho tam giác ABC vuông tại C có góc A = 60* và đường phân gác của góc BAC cắt BC tại E. Kẻ EK vuông góc AB tại K (K thuộc AB).  Kẻ BD vuông góc với AE tại D (D thuộc AE). Chứng minh tam giác ACE = tam giác AKE

Bài 4: Cho tam giác ABC vuông tại A có đường phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc BC tại H (H thuộc BC). Chứng minh tam giác ABE = tam giác HBE ?

0
22 tháng 11 2015

B A C E H d 1 2 1 2 D 1 2

xét tam giác CEH co:

H=90 độ=> C2+E=90 độ}

mà B2+E=90 độ            }=> C2+E=B2+E=90 độ

=> C2=B2=90 đỘ(1)

XÉT tam giác CDH co:

H=90 ĐỘ=>D2+C1=90 độ

xét tam giác ABD CÓ:}

A=90 ĐỘ=>B1+D1=90 ĐỘ}

mà D2=D1(2 góc đối đỉnh)} => D2+C1=B1+D1=90 ĐỘ 

=> C1=B1(2)

Từ (1) và(2)=> C1=B1; C2=B2 mà B1=B2=> C2=C1

VAY CH LA PHAN GIAC CU GOC DCE

để bạn sai ở chỗ là CH là p/g của góc DCE mới đúng

tick đúng 100% nhA

29 tháng 11 2018

Mk ko còn thời gian bạn tham khảo nhé

https://olm.vn/hoi-dap/detail/92770368985.html

Bài 1: Tam giác ABC cân tại A ( góc A > 90 độ). Hai đường cao BD và CE cắt nhau tại H. Tia AH cắt BC tai Ia) Chứng minh tam giác ABD = tam giác ACEb) Chứng minh I là trung điểm của BCc) Từ C kẻ đường thẳng d vuông góc với AC. d cắt đường thẳng AH tại F. Chứng minh CB là tia phân giác của góc FCHd) Giả sử góc BAC = 60 độ, AB = 4cm. Tính khoảng cách từ B đến đường thẳng CFBài 2: Tam giác ABC vuông tại A...
Đọc tiếp

Bài 1: Tam giác ABC cân tại A ( góc A > 90 độ). Hai đường cao BD và CE cắt nhau tại H. Tia AH cắt BC tai I

a) Chứng minh tam giác ABD = tam giác ACE

b) Chứng minh I là trung điểm của BC

c) Từ C kẻ đường thẳng d vuông góc với AC. d cắt đường thẳng AH tại F. Chứng minh CB là tia phân giác của góc FCH

d) Giả sử góc BAC = 60 độ, AB = 4cm. Tính khoảng cách từ B đến đường thẳng CF

Bài 2: Tam giác ABC vuông tại A có AB = 9cm, AC = 12cm. Trên cạnh BC lấy điểm D sao cho BD = BA. Kẻ đường thẳng qua D vuông góc với BC, đường thẳng này cắt AC ở E và cắt AB ở K

a) Tính độ dài cạnh BC

b) Chứng minh tam giác ABE = tam giác DBE. Suy ra BE là tia phân giác góc ABC

c)  Chứng minh AC = DK

d) Kẻ đường thẳng qua A vuông góc với BC tại H. Đường thẳng này cắt BE tại M. Chứng minh tam giác AME cân

Các bạn làm hộ mình nha, mình cần gấp lắm

1

nhìu zữ giải hết chắc chết!!!

758768768978980