K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 2 2024

-  có  = 900, AM là trung tuyến  MB = MC = 41

- Tính được: HM = 9 (cm), HB = 32 (cm); HC = 50 (cm)                      

- Xét  vuông tại H   AB2 = BH2 + AH2 = 322 + 402 = 2624      

- Xét  vuông tại H  AC2 = AH2 + HC2 = 402 + 502 = 4100       

- Suy ra:     =  

9 tháng 2 2018

Xét tam giác ABC vuông tại A có AM là trung tuyến => AM = BC/2

=> BC = 2.AM = 2.41 = 82

Tam giác ABC vuông tại A nên : S ABC = AB.AC/2

Lại có : AH là đường cao nên S ABC = AH.BC/2

=> AB.AC/2 = AH.BC/2

=> AB.AC = AH.BC = 40.82 = 3280

Áp dụng định lý pitago trong tam giác ABC vuông tại A ta có : 

AB^2+AC^2 = BC^2 = 82^2 = 6724

<=> (AB+AC)^2 = AB^2+AC^2+2.AB.AC = 6724+2.3280 = 13284

<=> AB+AC = \(18\sqrt{41}\)

(AC-AB)^2 = AB^2+AC^2-2.AB.AC = 6724-2.3280 = 164

<=> AC-AB = \(2\sqrt{41}\)( VÌ AC > AB )

=> AB = \(8\sqrt{41}\);  AC = \(10\sqrt{41}\)

=> AB/AC = \(\frac{8\sqrt{41}}{10\sqrt{41}}\)= 4/5

Tk mk nha

21 tháng 1 2018

Ôn tập Tam giác

AH
Akai Haruma
Giáo viên
31 tháng 8 2017

Lời giải:

Vì tam giác $ABC$ vuông tại $A$ có $AM$ là trung tuyến nên

\(AM=BM=MC=41\)

Áp dụng định lý Pitago cho tam giác $HAM$ có:

\(HM=\sqrt{AM^2-HA^2}=\sqrt{41^2-40^2}=9\)

Do đó:

\(\left\{\begin{matrix} BH=BM-HM=41-9=32\\ CH=HM+MC=9+41=50\end{matrix}\right.\)

Xét tam giác $BAH$ và $BCA$ có:

\(\left\{\begin{matrix} \text{chung góc}\widehat{B}\\ \widehat{BAH}=\widehat{BCA}(=90^0-\widehat{B})\end{matrix}\right.\Rightarrow \triangle BAH\sim \triangle BCA\)

\(\Rightarrow \frac{BA}{BH}=\frac{BC}{BA}\Leftrightarrow BA^2=BH.BC\)

Tương tự, \(AC^2=CH.BC\)

Suy ra \(\left(\frac{AB}{AC}\right)^2=\frac{BH.BC}{CH.BC}=\frac{BH}{CH}=\frac{32}{50}=\frac{16}{25}\)

\(\Leftrightarrow \frac{AB}{AC}=\frac{4}{5}\)

31 tháng 8 2017

giúp dùm cái hình đi

24 tháng 2 2020

Xét \(\Delta ABC\perp A\)ta có:

AM là trung tuyến ứng cạnh huyền BC

=> AM=BM=CM=41

Xét \(\Delta AHM\perp H\)ta có:

\(HM^2=AM^2-AH^2\left(pytago\right)\)

\(\Rightarrow HM^2=41^2-40^2=81\)

\(\Rightarrow HM=\sqrt{81}=9\)

Ta có: \(\hept{\begin{cases}BH=BM-HM=41-9=32\\CH=CM+HM=41+9=50\end{cases}}\)

Xét \(\Delta ABH,\Delta ABC\)có:

\(\widehat{AHB}=\widehat{CAB}\left(=90^o\right)\)

\(\widehat{B}:chung\)

\(\Rightarrow\Delta ABH\approx\Delta ABC\left(gg\right)\)

\(\Rightarrow\frac{AB}{BH}=\frac{BC}{BA}\Rightarrow BA^2=BH\cdot BC\)

Xét \(\Delta CHA,\Delta CAB\)có:

\(\widehat{CHA}=\widehat{CAB}\left(=90^o\right)\)

\(\widehat{C}:chung\)

\(\Rightarrow\Delta CHA\approx\Delta CAB\left(gg\right)\)

\(\Rightarrow\frac{AC}{CH}=\frac{BC}{AC}\Rightarrow AC^2=CH\cdot BC\)

Ta có: 

\(\left(\frac{AB}{BC}\right)^2=\frac{BH\cdot BC}{HC\cdot BC}=\frac{BH}{HC}=\frac{32}{50}=\frac{16}{25}\)

Vậy \(\frac{AB}{BC}=\frac{16}{25}\)

24 tháng 2 2020

:> hình dễ bn có thể tự vẽ:Đ vì mik ngại :>

Xét t/gABC_|_ A ta có:

AM là trung tuyến ứng vs cạnh huyền BC

=>AM=BM=CM=41

Lại xét t/gAHM_|_H theo định lý pi-ta-go ta có:

HM2=AM2-AH2 

=>HM2=412-402=81

=>HM=\(\sqrt{81}\)=9

Ta có: 

BH=BM-HM=41-9=32

CH=CM+HM=41+9=50

Xét t/gABH và t/gABC ta có:

^ABH=^ABC=90o

=>^B chung

=>t/gABH~t/gABC(g.g)

=>BA/BH=BC/BA=>BA2=BH.BC

Xét t/gCAB và t/g CHA ta có:

^CAB=^CHA=90o

=>^C chung

=>AC/AH=BC/AC=>AC2=HC.BC

=>(AB/AC)2=BH.BC/HC.BC=32/50=16/25

=> tỉ số hai cạnh góc AB/AC=16/25

A B C M 40 41

\(\Delta AHM\)co:

\(AM^2=AH^2+HM^2\)(AP dung dinh ly Pytago)

\(\Rightarrow41^2=40^2+HM^2\)

\(\Rightarrow HM^2=41^2-40^2=81\)

\(\Rightarrow HM=\sqrt{81}=9\)

Ti so do dai 2 canh goc vuong la:

\(\frac{AH}{HM}=\frac{40}{9}\)

HTDT

3 tháng 3 2020

\(\Delta ABC\)vuông tại A , trung tuyến AM=41 nên MB=MC=41 ta tính được HM=9,HB=32,HC=50 .Xét \(\Delta ABH\)và \(\Delta ACH\)vuông tại H , ta có :\(^{AB^2=40^2+32^2=2624^2;AC^2=40^2+50^2=4100\Rightarrow\frac{AB^2}{AC^2}=\frac{2624}{4100}=\frac{16}{25}\Rightarrow\frac{AB}{AC}=\frac{4}{5}}\)