Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
=>BH=CH=8(cm)
XétΔABH vuông tại H có
\(AB^2=AH^2+HB^2\)
hay AH=15(cm)
Xét ΔABC có
\(\cos A=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}=\dfrac{161}{289}\)
\(\Leftrightarrow\widehat{A}=56^0\)
\(\Leftrightarrow\widehat{B}=\dfrac{180^0-56^0}{2}=62^0\)
Áp dụng hệ thức về cạnh trong tam giác vào ΔABC, ta được:
\(AB\cdot AC=BC\cdot AH\)
\(\Leftrightarrow AH=\frac{AB\cdot AC}{BC}=\frac{17\cdot17}{16}=18.0625cm\)
Vậy: AH=18,0625cm
Xét ΔABC vuông tại A có AH là đường cao
nên \(HB\cdot HC=AH^2\)
=>HB*HC=4^2=16
mà HB+HC=10cm
nên HB,HC là hai nghiệm của phương trình:
\(x^2-10x+16=0\)
=>(x-8)(x-2)=0
=>\(\left[{}\begin{matrix}x=8\\x=2\end{matrix}\right.\)
Do đó, chúng ta sẽ có 2 trường hợp là \(\left[{}\begin{matrix}BH=8cm;CH=2cm\\BH=2cm;CH=8cm\end{matrix}\right.\)
bạn chứng minh công thức như trong link này để sử dụng nha :
https://hoc24.vn/hoi-dap/question/639032.html
ta có : \(BC^2=AB^2+AC^2+2AB.AC.cosA\)
\(\Leftrightarrow25^2=20^2+AC^2+2.20.AC.cos80\)
\(\Rightarrow AC\simeq12\)
ta có : \(AC^2=AB^2+BC^2+2.AB.BC.cosB\)
\(\Leftrightarrow cosB=\dfrac{AC^2-AB^2-BC^2}{2AB.BC}=\dfrac{12^2-20^2-25^2}{2.20.25}=-0,881\)
\(\Rightarrow\widehat{B}\simeq152^o\)
vậy ...............................................................................................................................
Aki Tsuki, Mysterious Person, Phùng Khánh Linh, Nhã Doanh, Trịnh Công Mạnh Đồng, Quoc Tran Anh Le, Nguyễn Thị Ngọc Thơ, miyano shiho, Hung nguyen, Toyama Kazuha, lê thị hương giang, Mặc Chinh Vũ, Nào Ai Biết,...