Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đường tròn c: Đường tròn qua B_1 với tâm O Đoạn thẳng f: Đoạn thẳng [B, A] Đoạn thẳng g: Đoạn thẳng [B, C] Đoạn thẳng h: Đoạn thẳng [A, C] Đoạn thẳng k: Đoạn thẳng [B, D] Đoạn thẳng l: Đoạn thẳng [E, C] Đoạn thẳng n: Đoạn thẳng [P, Q] Đoạn thẳng p: Đoạn thẳng [P, A] Đoạn thẳng q: Đoạn thẳng [Q, A] Đoạn thẳng t_1: Đoạn thẳng [A, O] Đoạn thẳng a: Đoạn thẳng [A, I] O = (1.88, 2.28) O = (1.88, 2.28) O = (1.88, 2.28) Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm B: Điểm trên c Điểm B: Điểm trên c Điểm B: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm D: Giao điểm đường của i, h Điểm D: Giao điểm đường của i, h Điểm D: Giao điểm đường của i, h Điểm E: Giao điểm đường của j, f Điểm E: Giao điểm đường của j, f Điểm E: Giao điểm đường của j, f Điểm H: Giao điểm đường của i, j Điểm H: Giao điểm đường của i, j Điểm H: Giao điểm đường của i, j Điểm P: Giao điểm đường của c, m Điểm P: Giao điểm đường của c, m Điểm P: Giao điểm đường của c, m Điểm Q: Giao điểm đường của c, m Điểm Q: Giao điểm đường của c, m Điểm Q: Giao điểm đường của c, m Điểm K: Giao điểm đường của n, t_1 Điểm K: Giao điểm đường của n, t_1 Điểm K: Giao điểm đường của n, t_1 Điểm I: Giao điểm đường của t, g Điểm I: Giao điểm đường của t, g Điểm I: Giao điểm đường của t, g
a) Ta thấy ngay tứ giác BEDC nội tiếp vì \(\widehat{BEC}=\widehat{BDC}=90^o\)
b) Do tứ giác BEDC nội tiếp nên \(\widehat{EDH}=\widehat{BCH}\)
Vậy thì \(\Delta EHD\sim\Delta BHC\left(g-g\right)\Rightarrow\frac{EH}{BH}=\frac{DH}{CH}\Rightarrow BH.DH=EH.CH\)
c) Do góc \(\widehat{EDH}=\widehat{BCH}\) nên \(\widehat{EDA}=\widehat{CBE}\) (Cùng phụ với hai góc trên)
Suy ra \(\widebat{AC}=\widebat{AP}+\widebat{QC}\)
Lại có \(\widebat{AC}=\widebat{AQ}+\widebat{QC}\Rightarrow\widebat{AP}=\widebat{AQ}\Rightarrow AP=AQ\)
(Liên hệ giữa dây và cung căng dây)
Vậy tam giác APQ cân tại A.
Ta thấy \(\widehat{AEQ}=\widebat{AQ}+\widebat{PB}=\widebat{AP}+\widebat{PB}=\widebat{AB}=\widehat{AQB}\)
Vậy \(\Delta AEQ\sim\Delta AQB\left(g-g\right)\Rightarrow\frac{AE}{AQ}=\frac{AQ}{AB}\Rightarrow AQ^2=AE.AB\Rightarrow AP^2=AE.AB\)
d) Gọi K là giao điểm của AO với PA. Do AP = AQ nên \(AO⊥PQ\)
Gọi AI là đường cao hạ từ đỉnh A của tam giác ABC.
Khi đó \(\frac{S_1}{S_2}=\frac{\frac{1}{2}PQ.AK}{\frac{1}{2}BC.AI}=\frac{PQ}{2BC}\Rightarrow\frac{AK}{AI}=\frac{1}{2}\)
Lại có \(\Delta ABI\sim\Delta ADK\left(g-g\right)\Rightarrow\frac{AB}{AD}=\frac{AI}{AK}=\frac{1}{2}\)
Xét tam giác vuông ABD có \(\frac{AB}{AD}=\frac{1}{2}\Rightarrow\widehat{BAC}=60^o\Rightarrow\widebat{BC}=60^o\)
Như vậy, khi A thay đổi trên cung lớn BC thì \(\widehat{BAC}=60^o\). Ta xét trường hợp tam giác ABC cân tại A, khi đó ta tính được :
\(BC=R\sqrt{3}\)
A B C O I R 30 O
a) Ta thấy ngay tứ giác BEDC nội tiếp vì ^BEC=^BDC=90o
b) Do tứ giác BEDC nội tiếp nên ^EDH=^BCH
Vậy thì ΔEHD∼ΔBHC(g−g)⇒EHBH =DHCH ⇒BH.DH=EH.CH
c) Do góc ^EDH=^BCH nên ^EDA=^CBE (Cùng phụ với hai góc trên)
Suy ra ⁀AC=⁀AP+⁀QC
Lại có ⁀AC=⁀AQ+⁀QC⇒⁀AP=⁀AQ⇒AP=AQ
(Liên hệ giữa dây và cung căng dây)
Vậy tam giác APQ cân tại A.
Ta thấy ^AEQ=⁀AQ+⁀PB=⁀AP+⁀PB=⁀AB=^AQB
Vậy ΔAEQ∼ΔAQB(g−g)⇒AEAQ =AQAB ⇒AQ2=AE.AB⇒AP2=AE.AB
d) Gọi K là giao điểm của AO với PA. Do AP = AQ nên AO⊥PQ
Gọi AI là đường cao hạ từ đỉnh A của tam giác ABC.
Khi đó S1S2 =12 PQ.AK12 BC.AI =PQ2BC ⇒AKAI =12
Lại có ΔABI∼ΔADK(g−g)⇒ABAD =AIAK =12
Xét tam giác vuông ABD có ABAD =12 ⇒^BAC=60o⇒⁀BC=60o
Như vậy, khi A thay đổi trên cung lớn BC thì ^BAC=60o. Ta xét trường hợp tam giác ABC cân tại A, khi đó ta tính được :
BC=R√3
~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~
~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~
Lời giải:
Sử dụng tính chất sau: \(S_{ABC}=\frac{1}{2}AB.AC\sin A\)
Chứng minh:
Kẻ đường cao $BH$ của tam giác $ABC$ ($H\in AC$)
Ta có:\(S_{ABC}=\frac{BH.AC}{2}\)
Mà: \(\frac{BH}{AB}=\sin A\Rightarrow BH=\sin A. AB\)
\(\Rightarrow S_{ABC}=\frac{\sin A.AB.AC}{2}\) (đpcm)
Áp dụng tính chất trên vào bài toán:
\(\frac{S_{AML}}{S_{ABC}}=\frac{\frac{1}{2}\sin A.AM.AL}{\frac{1}{2}.\sin A.AB.AC}=\frac{AM}{AB}.\frac{AL}{AC}(1)\)
\(\frac{S_{CLK}}{S_{ABC}}=\frac{\frac{1}{2}.CL.CK.\sin C}{\frac{1}{2}CA.CB\sin C}=\frac{CL}{CA}.\frac{CK}{CB}(2)\)
Vì $KLMB$ là hình bình hành nên \(ML\parallel BK\) hay \(ML\parallel BC\)
Tương tự: \(LK\parallel AB\)
Áp dụng định lý Ta-let:
\(\frac{AM}{AB}=\frac{AL}{AC}=\frac{ML}{BC}(3)\)
\(\frac{CL}{CA}=\frac{CK}{CB}(4)\)
Từ \((1);(2);(3);(4)\Rightarrow \left\{\begin{matrix} \frac{S_{AML}}{S_{ABC}}=(\frac{ML}{BC})^2\\ \frac{S_{CLK}}{S_{ABC}}=(\frac{CK}{CB})^2\end{matrix}\right.\)
\(\Rightarrow \frac{\sqrt{AML}+\sqrt{CLK}}{\sqrt{S_{ABC}}}=\frac{ML+CK}{CB}=\frac{BK+CK}{BC}=1\)
\(\Rightarrow S_{ABC}=(\sqrt{S_{AML}}+\sqrt{S_{CLK}})^2\approx 187,9\) (cm vuông(
2/a) Để phương trình có hai nghiệm phân biệt thì \(\Delta=m^2-4\left(m-1\right)>0\Leftrightarrow m^2-4m+4>0\)
\(\Leftrightarrow\left(m-2\right)^2>0\Leftrightarrow m\ne2\)
b) Ta có: \(x_1^3+x_2^3=\left(x_1+x_2\right)\left(x_1^2-x_1x_2+x_2^2\right)=\left(x_1+x_2\right)\left[\left(x_1+x_2\right)^2-3x_1x_2\right]=26\) (1)
Áp dụng hệ thức Viet ta có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-m\\x_1x_2=\frac{c}{a}=m-1\end{cases}}\)
Thay vào (1) ta có:\(\left(x_1+x_2\right)\left[\left(x_1+x_2\right)^2-3x_1x_2\right]=26\)
\(\Leftrightarrow-m\left[m^2-3\left(m-1\right)\right]=26\)
\(\Leftrightarrow-m^3+3m^2-3m=26\)
\(\Leftrightarrow-m^3+3m^2-3m-26=0\)
\(\Leftrightarrow\left(-m^3-2m^2\right)+\left(5m^2+10m\right)-\left(13m+26\right)=0\)
\(\Leftrightarrow-m^2\left(m+2\right)+5m\left(m+2\right)-13\left(m+2\right)=0\)
\(\Leftrightarrow\left(m+2\right)\left(-m^2+5m-13\right)=0\)
\(\Leftrightarrow\left(m+2\right)\left(m^2-5m+13\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}m=-2\\m^2-5m+13=0\left(1\right)\end{cases}}\)
Ta có: \(m^2-5m+13=\left(m-\frac{5}{2}\right)^2+\frac{27}{4}\ge\frac{27}{4}>0\forall x\)
Nên (1) vô nghiệm.Do đó m = -2
Đúng không ạ?Em không chắc đâu nha!