K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
30 tháng 7 2021

Gọi D, E, F lần lượt là tiếp điểm của (O) với BC, AC, AB

\(\Rightarrow OD\perp BC\) ; \(OE\perp AC\) ; \(OF\perp AB\)

Và \(OD=OE=OF=R\)

Ta có:

\(S_{ABC}=S_{OAB}+S_{OAC}+S_{OBC}\)

\(=\dfrac{1}{2}OF.AB+\dfrac{1}{2}OE.AC+\dfrac{1}{2}OD.BC\)

\(=\dfrac{1}{2}R.AB+\dfrac{1}{2}R.AC+\dfrac{1}{2}R.BC\)

\(=\dfrac{1}{2}R.\left(AB+AC+BC\right)\)

\(\Rightarrow45=\dfrac{1}{2}R.30\)

\(\Rightarrow R=3\left(cm\right)\)

NV
30 tháng 7 2021

undefined

19 tháng 5 2018

Đáp án là D

17 tháng 6 2020

Võ Hồng Phúc, Nguyễn Lê Phước Thịnh, Miyuki Misaki, White Hold, Cuc Pham, Nguyễn Trúc Giang, ??_Trang_??, Đỗ Hải Đăng, Nguyễn Văn Đạt, Huỳnh Quang Sang, Akai Haruma, Nguyễn Huy Tú, Nguyễn Huy Thắng, Triệu Hạ Vũ, Nguyễn Ngọc Lộc ,...

30 tháng 7 2020

UWMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM...

1. cho nữa đường tròn tâm O bán kính R có đường kính AB và bán kính AC vuông góc AB, điểm M di động trên cung AC, điểm H là hình chiếu của M lên OC. xác dịnh vị trí của M để MA + MH lớn nhất2. cho (o;r) có đường kính AB, đường trung trực của AO cắt đường tròn ở C và D.a. tứ giác ACOD là hình jb. tam giác BCD là tam giác jc. tính chu vi và diện tích tam giác BCD3. tam giác ABC nhọn nội tiếp...
Đọc tiếp

1. cho nữa đường tròn tâm O bán kính R có đường kính AB và bán kính AC vuông góc AB, điểm M di động trên cung AC, điểm H là hình chiếu của M lên OC. xác dịnh vị trí của M để MA + MH lớn nhất

2. cho (o;r) có đường kính AB, đường trung trực của AO cắt đường tròn ở C và D.

a. tứ giác ACOD là hình j

b. tam giác BCD là tam giác j

c. tính chu vi và diện tích tam giác BCD

3. tam giác ABC nhọn nội tiếp đường tròn O; AB là 1 đường kính của đường tròn. H là trực tâm của tam giác ABC.

a. CM: tứ giác BHCD là hình bình hành

b. CM: HA + HB + HC = 2( OM + ON + OK) trong đó M, N, K là hình chiếu của O lên 3 cạnh của tam giác ABCgiúp với1. cho nữa đường tròn tâm O bán kính R có đường kính AB và bán kính AC vuông góc AB, điểm M di động trên cung AC, điểm H là hình chiếu của M lên OC. xác dịnh vị trí của M để MA + MH lớn nhất

2. cho (o;r) có đường kính AB, đường trung trực của AO cắt đường tròn ở C và D.

a. tứ giác ACOD là hình j

b. tam giác BCD là tam giác j

c. tính chu vi và diện tích tam giác BCD

3. tam giác ABC nhọn nội tiếp đường tròn O; AB là 1 đường kính của đường tròn. H là trực tâm của tam giác ABC.

a. CM: tứ giác BHCD là hình bình hành

b. CM: HA + HB + HC = 2( OM + ON + OK) trong đó M, N, K là hình chiếu của O lên 3 cạnh của tam giác ABCgiúp với

0
31 tháng 12 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Gọi O là tâm đường tròn nội tiếp tam giác ABC

Nối OA, OB, OC

Khoảng cách từ tâm O đến các tiếp điểm là đường cao của các tam giác OAB, OAC, OBCv

Ta có : S A B C = S O A B + S O A C + S O B C

= (1/2).AB.r + (1/2).AC.r + (1/2).BC.r

= (1/2)(AB + AC + BC).r

Mà AB + AC + BC = 2p

Nên  S A B C = (1/2).2p.r = p.r

2: ΔABC vuông tại A nội tiếp (O)

=>O là trung điểm của BC

BC=căn 6^2+8^2=10cm

=>OB=OC=10/2=5cm

S=5^2*3,14=78,5cm2