K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
1 tháng 1 2020

Bạn tham khảo lời giải tại đây:

Câu hỏi của Not Perfect - Toán lớp 8 | Học trực tuyến

AH
Akai Haruma
Giáo viên
1 tháng 1 2020

Lời giải:

a)

Sử dụng công thức về tia phân giác ta có:

\(\frac{DI}{AI}=\frac{BD}{AB}\Rightarrow \frac{DI}{DA}=\frac{BD}{AB+BD}(1)\)

\(\frac{BD}{DC}=\frac{AB}{AC}\Rightarrow \frac{BD}{BC}=\frac{AB}{AB+AC}\Rightarrow BD=\frac{AB.BC}{AB+AC}(2)\)

Từ \((1);(2)\Rightarrow \frac{DI}{DA}=\frac{\frac{AB.BC}{AB+AC}}{AB+\frac{AB.BC}{AB+AC}}=\frac{AB.BC}{AB(AB+BC+AC)}=\frac{BC}{AB+BC+AC}=\frac{a}{a+b+c}\)

Ta có đpcm.

b)

Sử dụng kết quả phần a:

\(\frac{DI}{DA}=\frac{a}{a+b+c}\)

Bằng cách chứng minh hoàn toàn tương tự ta cũng có:

\(\frac{EI}{EB}=\frac{b}{a+b+c}; \frac{FI}{FC}=\frac{c}{a+b+c}\)

Do đó:

\(\frac{DI}{DA}+\frac{EI}{EB}+\frac{FI}{FC}=\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)

Ta có đpcm.

AH
Akai Haruma
Giáo viên
1 tháng 1 2020

Hình vẽ:

Tính chất đường phân giác của tam giác

AH
Akai Haruma
Giáo viên
17 tháng 8 2021

Lời giải:

Áp dụng tính chất tia phân giác:

\(\frac{DI}{AI}=\frac{BD}{AB}=\frac{DC}{AC}=\frac{BD+DC}{AB+AC}=\frac{BC}{AB+AC}\)

\(\Rightarrow \frac{DI}{AD}=\frac{BC}{AB+AC+BC}\)

\(\frac{EI}{BI}=\frac{AE}{AB}=\frac{EC}{BC}=\frac{AE+EC}{AB+BC}=\frac{AC}{AB+BC}\Rightarrow \frac{EI}{EB}=\frac{AC}{AB+BC+AC}\)

\(\frac{FI}{CI}=\frac{AF}{AC}=\frac{BF}{BC}=\frac{AF+BF}{AC+BC}=\frac{AB}{AC+BC}\Rightarrow \frac{FI}{FC}=\frac{AB}{AB+BC+AC}\)

Cộng 3 đẳng thức trên:

\(\frac{DI}{AD}+\frac{EI}{EB}+\frac{FI}{FC}=\frac{AB+BC+AC}{AB+BC+AC}=1\) 

Ta có đpcm.

AH
Akai Haruma
Giáo viên
17 tháng 8 2021

Hình vẽ:

AH
Akai Haruma
Giáo viên
1 tháng 1 2020

Bạn tham khảo lời giải tại đây:

Câu hỏi của Not Perfect - Toán lớp 8 | Học trực tuyến

1 tháng 1 2020

Tự vẽ hình nha.
Vì AD, BE, CF là 3 tia p/g của tam giác ABC mà \(AD\cap BE\cap CF=\left\{I\right\}\)
nên I là trọng tâm trong tam giác ABC
\(\Rightarrow ID=\frac{1}{3}AD;EI=\frac{1}{3}EB;FI=\frac{1}{3}FC\)
\(\Rightarrow\frac{DI}{DA}+\frac{EI}{EB}+\frac{FI}{FC}=\frac{\frac{1}{3}AD}{AD}+\frac{\frac{1}{3}EB}{EB}+\frac{\frac{1}{3}FC}{FC}=\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1\)

1 tháng 5 2023

< Bạn tự vẽ hình nha>

a)Xét ΔABE và  ΔACF, ta có:

góc A: chung

góc F=góc E= 90o

Vậy  ΔABE ∼  ΔACF (g.g)

b)Xét  ΔHEC và  ΔHFB là:

góc H: chung

H1=H2(đối đỉnh)

Vậy  ΔHEC∼ ΔHFB (g.g)

\(\dfrac{HE}{HF}\)=\(\dfrac{HC}{HB}\)⇔HE.HB=HF.HC

<Mình chỉ biết đến đó thôi>bucminh