K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 8 2021

Ta có: \(A=180^0-\left(B+C\right)=80^0\)

Trong tam giác vuông BCH:

\(sinB=\dfrac{CH}{BC}\Rightarrow CH=BC.sinB=12.sin60^0=6\sqrt{3}\left(cm\right)\)

\(cotB=\dfrac{BH}{CH}\Rightarrow BH=CH.cotB\) (1)

Trong tam giác vuông ACH:

\(sinA=\dfrac{CH}{AB}\Rightarrow AB=\dfrac{CH}{sinA}=\dfrac{6\sqrt{3}}{sin80^0}\approx10,6\left(cm\right)\)

\(cotA=\dfrac{AH}{CH}\Rightarrow AH=CH.cotA\) (2)

(1);(2) \(\Rightarrow AH+BH=CH\left(cotA+cotB\right)\)

\(\Rightarrow AB=CH\left(cotA+cotB\right)\)

\(\Rightarrow S_{ABC}=\dfrac{1}{2}CH.AB=\dfrac{1}{2}.CH^2\left(cotA+cotB\right)=\dfrac{1}{2}.\left(6\sqrt{3}\right)^2\left(cot80^0+cot60^0\right)\approx40,7\left(cm^2\right)\)

NV
21 tháng 8 2021

undefined

30 tháng 6 2016

bài trong sbt có giải á bạn

10 tháng 11 2017

cho mik hỏi sbt nào vậy

câu 1. kẻ đường cao AH ( H thuộc BC) 
xét tam giác ABH có AH= BH .tanB 
xét tam giác ACH có AH= CH.tanC 
~> BH = CH.tanC/tanB 
có BC = BH + CH = CH ( tanB + tanC)/tanB = 9 
CH=9tanB/(tanB+tanC) 
xét tam giác ACH có AC=CH/cosC 
~> AC =7,91 
câu 2: thì chác là : trong tam giác vuông canh đối diện với góc 30 độ bằng nửa cạnh huyền ~> OAB là tam giác vuông tại A thì OB max = 2 
câu 3 
có sin^2(10)=sin^2(170)=sin^2(190)=sin^2(35... 
.................................... 
rui` ban. làm típ đi ^^! 
còn phần tiếp theo thì bạn kia đã có rùi

2 tháng 9 2017

kẻ đường cao AH ( H thuộc BC) 

xét tam giác ABH có AH= BH .tanB 

xét tam giác ACH có AH= CH.tanC 

~> BH = CH.tanC/tanB 

có BC = BH + CH = CH ( tanB + tanC)/tanB = 9 

CH=9tanB/(tanB+tanC) 

xét tam giác ACH có AC=CH/cosC 

~> AC =7,91 

13 tháng 9 2016

AB=21/(3+4)x3=9 cm

AC=21-9=12cm

Tự kẻ hình bạn nhé =)))

Áp dụng định lí Pitago vào tam giác ABC , có

AB^2+AC^2=BC^2

=>thay số vào, tính được BC=15cm

Áp dụng hệ thức giữa cạnh và đường cao trong tg vuông, có:

AB^2=BHxBC

=>BH=81/15=5.4cm

=>CH=15-5.4=9.6cm

AH^2=BHxCH=5.4x9.6=51.84cm

1 tháng 6 2017

bài trong sbt có giải á bạn

15 tháng 7 2017

a) Trong tam giác vuông BCH, ta có:

CH=BC.sin⁡B^=12.sin⁡60≈10,392 (cm)

Trong tam giác vuông ABC, ta có:

\(A\)=180−(60+40)=80

Trong tam giác vuông ACH, ta có:

\(AC=\dfrac{CH}{sinA}=\dfrac{10,932}{sin80}=10,552\left(cm\right)\)

b) Kẻ AK⊥BCAK⊥BC

Trong tam giác vuông ACK, ta có:

AK=AC.sin⁡C≈10,552.sin⁡40=6,783 (cm)

Vậy SABC=12.AK.BC≈12.6,783.12=40,696 (cm2)



2 tháng 12 2018

a, Tìm được CH =  6 3 cm, AC =  6 3 sin 80 0 ≈ 10,55cm

b, Ta có:  S A B C = 1 2 . 6 3 . ( 6 + 1 , 83 )

=>  S A B C ≈ 40 , 69 c m 2

11 tháng 10 2020

a) Ta có: \(BH+HC=BC\)

\(\Leftrightarrow AH\cdot\cot B+AH\cdot\cot C=BC\)

\(\Leftrightarrow AH\cdot\left(\frac{\sqrt{3}}{3}+1,3\right)=BC\)

\(\Leftrightarrow AH\cdot1,9=10\)

\(\Rightarrow AH=5,3\left(cm\right)\)

\(\Rightarrow AC=\frac{AH}{\sin C}=\frac{5,3}{0,6}=8,2\left(cm\right)\)

b) Ta có: \(S_{ABC}=\frac{AH\cdot BC}{2}=\frac{5,3\cdot10}{2}=26,5\left(cm^2\right)\)

P/s: Các kết quả chỉ tương đối

1 tháng 7 2019

Toán lớp 9