K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2018

Tam giác ABC có: Sin B = \(\frac{AC}{BC}\) (hệ thức lượng) => AC = Sin B.BC = Sin 450 . 10 = \(5\sqrt{2}\) (cm)

 Sin C = \(\frac{AB}{BC}\) (hệ thức lượng) => AB = Sin 300 . 10 = 5 (cm)

Ta có tam giác ABC có: góc A + góc B + góc C = 1800 (định lý)

=> góc A = 1800 - 450 - 300 = 1050

Chúc bạn học tốt!

15 tháng 9 2021

vì tam giác ABC khg phải tam giác vuông nên cách làm trên sai

Ta có: ΔABC vuông tại A(gt)

nên \(\widehat{B}+\widehat{C}=90^0\)

hay \(\widehat{B}=60^0\)

Xét ΔABC vuông tại A có 

\(AB=AC\cdot\tan30^0\)

\(\Leftrightarrow AB=10\cdot\dfrac{\sqrt{3}}{3}=\dfrac{10\sqrt{3}}{3}\left(cm\right)\)

Xét ΔABC vuông tại A có 

\(\sin30^0=\dfrac{AB}{BC}\)

\(\Leftrightarrow BC=\dfrac{10\sqrt{3}}{3}:\dfrac{1}{2}=\dfrac{10\sqrt{3}}{3}\cdot2=\dfrac{20\sqrt{3}}{3}\left(cm\right)\)

a: \(\widehat{B}=90^0-30^0=60^0\)

XétΔABC vuông tại A có 

\(\sin C=\dfrac{AB}{BC}\)

nên AB=5cm

=>\(AC=5\sqrt{3}\left(cm\right)\)

b: \(\widehat{C}=90^0-30^0=60^0\)

Xét ΔABC vuông tại A có 

\(\sin C=\dfrac{AB}{BC}\)

hay \(BC=16\sqrt{3}\left(cm\right)\)

=>\(AC=8\sqrt{3}\left(cm\right)\)

5 tháng 4 2021

Trả lời:

Tam giác ABC có:

Sin B = AC/BC (hệ thức lượng)

=> AC = Sin B.BC = Sin 450 . 10 = 5√2 (cm)

 Sin C = AB/BC

=> AB = Sin 300 . 10 = 5 (cm)

Ta có tam giác ABC có: góc A + góc B + góc C = 1800 

=> góc A = 1800 - 450 - 300 = 1050

5 tháng 4 2021

Tam giác ABC có: Sin B = ACBCACBC (hệ thức lượng) => AC = Sin B.BC = Sin 450 . 10 = 5252 (cm)

 Sin C = ABBCABBC (hệ thức lượng) => AB = Sin 300 . 10 = 5 (cm)

Ta có tam giác ABC có: góc A + góc B + góc C = 1800 (định lý)

=> góc A = 1800 - 450 - 300 = 1050

góc B=90-30=60 độ

Xét ΔABC vuông tại A có sin C=AB/BC

=>AB/10=1/2

=>AB=5cm

=>\(AC=5\sqrt{3}\left(cm\right)\)

HB=AB^2/BC=2,5cm

HC=BC-BH=10-2,5=7,5cm

 

12 tháng 4 2018

HS tự làm

NV
23 tháng 7 2021

Kẻ đường cao AH

Trong tam giác vuông ABH:

\(cotB=\dfrac{BH}{AH}\Rightarrow BH=AH.cotB\)

Trong tam giác vuông ACH:

\(cotC=\dfrac{CH}{AH}\Rightarrow CH=AH.cotC\)

\(\Rightarrow BH+CH=AH.cotB+AH.cotC\)

\(\Leftrightarrow BC=AH\left(cotB+cotC\right)\)

\(\Leftrightarrow AH=\dfrac{BC}{cotB+cotC}\)

\(\Rightarrow S_{ABC}=\dfrac{1}{2}AH.BC=\dfrac{1}{2}.\dfrac{BC^2}{cotB+cotC}=\dfrac{1}{2}.\dfrac{6^2}{cot45^0+cot30^0}\approx11,4\left(cm^2\right)\)

NV
23 tháng 7 2021

undefined