Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C I K 1 2 1 2 x y
a) Ta có :
Góc B1 + Góc B2 = 180o
\(\Rightarrow\frac{1}{2}\)Góc B1 + \(\frac{1}{2}\)Góc B2 = 90o
\(\Rightarrow\)Góc ABx + Góc ABI = 90o
\(\Rightarrow\)Góc IBx = 90o
Mà góc IBx + góc IBK = 180o ( kề bù )
\(\Rightarrow\)Góc IBK = 90o ; nên \(\Delta IBK\) vuông tại B.
Chứng minh tương tự, ta cũng có góc ICK vuông, nên \(\Delta ICK\)vuông tại C.
b) Ta có :
Góc B + Góc C = \(180^o-\)Góc A
\(\Rightarrow2.\)Góc C + Góc C = 180o - \(\alpha\)
Góc C = \(\frac{180^o-\alpha}{3}=60^o-\frac{\alpha}{3}\)
Góc B = \(\left(60^o-\frac{\alpha}{3}\right).2=120^o-\frac{2\alpha}{3}\)
Gọi M là gđ của tia pg ở C với AB, N là gđ của tia pg ở B với AC.
*Tính góc BIC:
Xét tam giác BIC: BIC = 180 - ( IBC + ICB )
Xét tam giác ABC: A + ABC + ACB = 180 <=> A + 2IBC + 2ICB = 180 <=> A + 2(IBC + ICB) = 180
<=> IBC + ICB = (180 - α ) : 2
Từ đây em tính đc góc BIC
*Tính góc BKC:
Em nhìn vào tứ giác BICK. Trong 1 tứ giác thì tổng các góc bằng 360 độ.
Gọi 2 góc phân giác ngoài ở B là B1, B2; tương tự có C1, C2.
Ta có: ABC + B1 + B2 = 180 <=> 2IBC + 2B1 (CBK) = 180 <=> IBC + B1 = 90 <=> IBC = 90
Tương tự: ACB + C1 + C2 = 180 <=> 2ICB + 2C1 (BCK) = 180 <=> ICB + C1 = 90 <=> ICK = 90
Xét tứ giác BICK: BIC + IBK + BKC + ICK = 360
Có 3 góc rồi em sẽ tính đc BKC
*Tính góc BEC:
Xét tam giác BEK: BEC + EBK + BKC = 180
Đã có EBK và BKC => BEC
cách 2
Góc ABC + góc ACB=180 độ-α => góc IBC+góc ICB=(ABC + góc ACB)/2=(180 độ-α)/2
=> góc BIC=180 độ - (góc IBC+góc ICB)=180 độ - (180 độ-α)/2 = 90 độ+α/2
_Vì mỗi góc, tia phân giác trong luôn vuông góc với tia phân giác ngoài nên
Xét tứ giác BICK có tổng số đo các góc là 360 độ, góc B và góc C vuông
=>góc BKC=360 - (góc IBK+góc ICK) - góc BIC=360-90.2- (90 độ+α/2)=90 độ - α/2
_Góc BEC= 180 độ - góc IBK - góc BKC= 180 - 90 - (90 độ - α/2) = α/2
Gọi M là gđ của tia pg ở C với AB, N là gđ của tia pg ở B với AC.
*Tính góc BIC:
Xét tam giác BIC: BIC = 180 - ( IBC + ICB )
Xét tam giác ABC: A + ABC + ACB = 180 <=> A + 2IBC + 2ICB = 180 <=> A + 2(IBC + ICB) = 180
<=> IBC + ICB = (180 - α ) : 2
Từ đây em tính đc góc BIC
*Tính góc BKC:
Em nhìn vào tứ giác BICK. Trong 1 tứ giác thì tổng các góc bằng 360 độ.
Gọi 2 góc phân giác ngoài ở B là B1, B2; tương tự có C1, C2.
Ta có: ABC + B1 + B2 = 180 <=> 2IBC + 2B1 (CBK) = 180 <=> IBC + B1 = 90 <=> IBC = 90
Tương tự: ACB + C1 + C2 = 180 <=> 2ICB + 2C1 (BCK) = 180 <=> ICB + C1 = 90 <=> ICK = 90
Xét tứ giác BICK: BIC + IBK + BKC + ICK = 360
Có 3 góc rồi em sẽ tính đc BKC
*Tính góc BEC:
Xét tam giác BEK: BEC + EBK + BKC = 180
Đã có EBK và BKC => BEC
cách 2
Góc ABC + góc ACB=180 độ-α => góc IBC+góc ICB=(ABC + góc ACB)/2=(180 độ-α)/2
=> góc BIC=180 độ - (góc IBC+góc ICB)=180 độ - (180 độ-α)/2 = 90 độ+α/2
_Vì mỗi góc, tia phân giác trong luôn vuông góc với tia phân giác ngoài nên
Xét tứ giác BICK có tổng số đo các góc là 360 độ, góc B và góc C vuông
=>góc BKC=360 - (góc IBK+góc ICK) - góc BIC=360-90.2- (90 độ+α/2)=90 độ - α/2
_Góc BEC= 180 độ - góc IBK - góc BKC= 180 - 90 - (90 độ - α/2) = α/2
Bài 3:
a: Xét ΔABM và ΔACN có
AB=AC
góc ABM=góc ACN
BM=CN
Do đó: ΔABM=ΔACN
Suy ra: AM=AN
b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc BAH=góc CAK
Do đó; ΔAHB=ΔAKC
Suy ra: AH=AK và BH=CK
c: Xét ΔHBM vuông tại H và ΔKCN vuông tại K có
MB=CN
góc M=góc N
Do đó ΔHBM=ΔKCN
Suy ra: góc HBM=góc KCN
=>góc OBC=góc OCB
hay ΔOBC can tại O