Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét tam giác AHC vuông tại H có:
AC2=AH2+HC2
=>HC2=AC2-AH2=102-82=100-64=36=62
=>HC=6(cm)
ta có BH+CH=BC ( vì H E BC)
=>BH=12-6=6(cm)
Xét tam giác AHB vuông tại H có;
AB2=AH2+HB2
=>AB2=82+62=100=102
=>AB=10(cm)
Vậy chu vi tam giác ABC=AB+AC+BC=10+10+12=32(cm)
Theo hình vẽ , ta có : AH2 + HC2 = AC2 => HC2 = AC2 - AH2 = 102 - 82 = 100 - 64 = 36 => HC = 6 cm
=> HB = BC - HC = 12 - 6 = 6 (cm) => AH2 + HB2 = AB2 = 82 + 62 = 64 + 36 = 100 => AB = 10 cm
=> PABC = AB + BC + AC = 10 + 12 + 10 = 32 (cm)
AB = 13 cm, BC = 21 cm.
Từ đó, chu vi của tam giác ABC là 54 cm.
Áp dụng định lí Py-ta-go vào tam giác AHB vuông tại H có:
\(AB^2=AH^2+BH^2\)
=>\(BH^2=AB^2-AH^2=\left(8,5\right)^2-4^2=72.25-16=56.25\)
=> \(BH=\sqrt{56,25}=7.5\)
Áp dụng định lí Py-ta-go vào tam giác AHC vuông tại H có:
\(AC^{2^{ }}=AH^2+HC^2\)
=>\(HC^2=AC^2-AH^2=5^2-4^2=25-16=9\)
=>\(HC=\sqrt{9}=3\)
Vì H thuộc BC => BC=HB+HC=7.5+3=10.5
Chu vi tam giác ABC là: AB+AC+BC=8,5+5+10,5=24(cm)
Vậy chu vi tam giác ABC là 24 cm
Kết quả không phải là 24 cm. Vì H nằm ngoài đoạn thẳng BC.
(tự vẽ hinh)
* Do AH vuông góc vs BC(gt)
=> Tam giác AHC và tam giác AHC là tam giác vuông tại H
* Tam giác vuông AHC có:
AC^2=AH^2+HC^2(ĐL py-ta-go)
20^2=12^2+HC^2
400=144+HC^2
HC^2=400-144
HC^2=256
HC^2=16^2(vì HC>0)
=>HC=16 cm
* Tam giác AHB có:
AB^2=AH^2+HB^2(DL py-ta-go)
AB^2=12^2+5^2
AB^2=144+25
AB^2=169
AB^2=13^2(vì AB>0)
=>AB=13 cm
*Ta có:
BH+HC=BC(AH vuống góc với BC tại H)
5+16=BC
=>BC=21cm
*Chu vi tam giác ABC:
AB+BC+AC=13+21+20=53cm
* Tam giác AHB và tam giác AHC là tam giác vuông trong vì:
AH vuông góc với BC tại H
AH cát BC tại hH tạo thành 2 tam giác vuông trong tam giác ABC
HC2=102-82=36=62 cm( ĐL Pi-ta-go)
HB=12 cm-6 cm=6 cm
BA2=82+62=100=102 cm
=> chu vi tam giác ABC=10+10+12=32 cm