Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) do am là đường trung tuyến
=>m là trung điểm bc
Mà m là trung điểm của ad (do d là điểm đối xứng với a qua m)
=>ad giao với ad tại m là trung điểm mỗi đường
=>abcd là hbh
b) Giả sử abcd là hcn
=>góc a=90 độ
=>tam giác abc vuông tại a
Vậy tam giác abc là tam giác vuông tại a thìabcd là hcn
c) gọi mn giao ac tại e
=>e là tđ của ac
e là tđ của mn
=>anmc là hbh
ta có am=mc(vì am là đường trung tuyến trong tam giác vuông)
=>amnc là hình thoi
cm: abmn là hbh
=>ab=mn
diện tích amnc=ac*mn/2=4*3/2=6
a,Xét tứ giác ABEC có hai đường chéo cắt nhau tại trung điểm mỗi đường
suy ra ABEC là hình bình hành
b,Để ABEC là hình chữ nhật thì góc BAC=90độ suy ra tam giác ABC vuộng tại A thì ABEC là hình chữ nhật
Để ABEC là hình thoi thì AB=AC suy ra tam giác ABC cân tại A thì ABEC là hình thoi
Để ABEC là hình vuông thì góc BAC=90độ và AB=AC suy ra tam giác ABC vuông cân tại A thì ABEC là hình vuông
a, xét abec có
bm=mc, am=me
=> abec là hbh
b hcn:
tam giác abc: có a là góc vuông
có:ab=ac
có: abc vuông cân
a: ΔABC vuông tại A
mà AM là đường trung tuyến
nên \(AM=MB=MC=\dfrac{BC}{2}\)
Xét tứ giác AMCK có
I là trung điểm chung của AC và MK
nên AMCK là hình bình hành
Hình bình hành AMCK có MA=MC
nên AMCK là hình thoi
b: AMCK là hình thoi
=>AK//MC và AK=MC
AK//MC
M\(\in\)BC
Do đó: AK//MB
AK=MC
MC=MB
Do đó: AK=MB
Xét tứ giác AKMB có
AK//MB
AK=MB
Do đó: AKMB là hình bình hành
c; Để hình thoi AMCK trở thành hình vuông thì \(\widehat{KCM}=90^0\)
AMCK là hình thoi
=>CA là phân giác của \(\widehat{KCM}\)
=>\(\widehat{ACM}=\dfrac{1}{2}\cdot\widehat{KCM}=45^0\)
=>\(\widehat{ACB}=45^0\)
d. Chứng minh đc ABDC là hình chữ nhật.
=> \(S_{ABDC}=AB.AC\)
Để \(S_{ABDC}=AB^2\)
khi đó AC = AB
=> Tam giác ABC có thêm điều kiện: cân tại A
B A C D P N M
a) Xét tứ giác BMCP có :
N là trung điểm của MP
N là trung điểm của BC
=> BMCP là hình bình hành ( dấu hiệu )
b) Xét tam giác ABC có :
M là trung điểm của AB
N là trung điểm của BC
=> Mn là đường trung bình của tam giác ABC ( định nghĩa )
=> MN // AC hay MP // AC ; MN = 1/2 AC ( tính chất )
Vì MN = MP
=> MN + MP = 1/2 AC + 1/2 AC = AC = MP
Xét tứ giác AMPC có : AC // MP ; AC = MP
=> AMPC là hình bình hành ( dấu hiệu )
Hình bình hành AMPC có : góc ABC = 90o
=> AMPC là hình chữ nhật ( dấu hiệu )