Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C F E H
\(\Delta ABH\) và \(\Delta ABD\) có chung đường cao kẻ từ \(B\rightarrow AD\) nên \(\frac{AH}{AD}=\frac{S_{ABH}}{S_{ABD}}\) (1)
\(\Delta AHC\) và \(\Delta ADC\) có chung đường cao kẻ từ \(C\rightarrow AD\) nên \(\frac{AH}{AD}=\frac{S_{AHC}}{S_{ADC}}\) (2)
Từ (1) và (2) suy ra
\(\frac{AH}{AD}=\frac{S_{ABH}}{S_{ABD}}=\frac{S_{AHC}}{S_{ADC}}=\frac{S_{ABH}+S_{AHC}}{S_{ABD}+S_{ADC}}=\frac{S_{ABH}+S_{ACH}}{S_{ABC}}\)
( Áp dụng tính chất của dãy tỉ số bằng nhau )
CMTT \(\frac{BH}{BE}=\frac{S_{ABH}+S_{BCH}}{S_{ABC}}\)
\(\frac{CH}{CF}=\frac{S_{ACH}+S_{BCH}}{S_{ABC}}\)
Cộng vế với vế của các bất đẳng thức trên ta được :
\(\frac{AH}{AD}+\frac{BH}{BE}+\frac{CH}{CF}=\frac{2\left(S_{ABH}+S_{ACH}+S_{BCH}\right)}{S_{ABC}}=\frac{2S_{ABC}}{S_{ABC}}=2\left(đpcm\right)\)
Chúc bạn học tốt !!!
< Bạn tự vẽ hình nha>
a)Xét ΔABE và ΔACF, ta có:
góc A: chung
góc F=góc E= 90o
Vậy ΔABE ∼ ΔACF (g.g)
b)Xét ΔHEC và ΔHFB là:
góc H: chung
H1=H2(đối đỉnh)
Vậy ΔHEC∼ ΔHFB (g.g)
⇒\(\dfrac{HE}{HF}\)=\(\dfrac{HC}{HB}\)⇔HE.HB=HF.HC
<Mình chỉ biết đến đó thôi>
a) Xét tam giác ABE và tam giác ACF có:
góc AEB = góc AFC (= 90 độ)
góc A chung
=> tam giác ABE \(\sim\) tam giác ACF (gg)
=> \(\dfrac{AB}{AC}=\dfrac{AF}{AE}\) (các cạnh t/ứng tỉ lệ)
=> AB . AE = AC . AF
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
gsoc A chung
Do đó: ΔABE đồng dạng với ΔACF
SUy ra: AE/AF=AB/AC
hay \(AE\cdot AC=AB\cdot AF;\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
b: Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc A chung
Do đó: ΔAEF đồng dạng với ΔaBC
Suy ra: góc AFE=góc ACB
A B C D E F H
\(\Delta ABH\) và \(\Delta ABD\) có chung đường cao kẻ từ B -> AD nên \(\dfrac{AH}{AD}=\dfrac{S_{ABH}}{S_{ABD}}\) (1)
\(\Delta AHC\) và \(\Delta ADC\) có chung đường cao kẻ từ C -> AD nên \(\dfrac{AH}{AD}=\dfrac{S_{AHC}}{S_{ADC}}\) (2)
Từ (1) và (2) suy ra \(\dfrac{AH}{AD}=\dfrac{S_{ABH}}{S_{ABD}}=\dfrac{S_{AHC}}{S_{ADC}}=\dfrac{S_{ABH}+S_{AHC}}{S_{ABD}+S_{ADC}}=\dfrac{S_{ABH}+S_{ACH}}{S_{ABC}}\)(áp dụng tính chất của dãy tỉ số = nhau)
CMTT: \(\dfrac{BH}{BE}=\dfrac{S_{ABH}+S_{BCH}}{S_{ABC}}\)
\(\dfrac{CH}{CF}=\dfrac{S_{ACH}+S_{BCH}}{S_{ABC}}\)
Cộng vế với vế của các đẳng thức trên ta được :
\(\dfrac{AH}{AD}+\dfrac{BH}{BE}+\dfrac{CH}{CF}=\dfrac{2\left(S_{ABH}+S_{ACH}+S_{BCH}\right)}{S_{ABC}}=\dfrac{2S_{ABC}}{S_{ABC}}=2\)
(đpcm)