K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
11 tháng 4 2019
A B C E M 2 1
a, Xét \(\Delta AMB\)và \(\Delta EMC\)có :
\(MB=MC\)( M là trung điểm BC )
\(\widehat{M_1}=\widehat{M}_2\)( 2 góc đối đỉnh )
\(AM=ME\left(GT\right)\)
\(\Rightarrow\Delta AMB=\Delta EMC\left(c.g.c\right)\)
\(\Rightarrow AB=EC\)( 2 cạnh tương ứng )
b, Xét \(\Delta ACE\)có :
\(AC-CE< AE< AC+BC\)( BĐT trong tam giác )
Mà \(AB=CE\left(cmt\right)\)
\(\Rightarrow AC-AB< AE< AC+AB\)
\(\Leftrightarrow\frac{AC-AB}{2}< \frac{AE}{2}< \frac{AC+AB}{2}\)
Hình tự vẽ nha bạn
a)Xét tam giác ABM và tam giác CEM có:
BM=MC(gt)
\(\widehat{AMB}=\widehat{CME}\)(2 góc đối đỉnh)
AM=ME(gt)
\(\Rightarrow\)tam giác AMB=tam giác CME(c-g-c)
=> AB=CE(2 cạnh tương ứng)
Vì M là trung điểm của AE \(\Rightarrow AM=\frac{1}{2}AE\)
b) Bất đẳng thức đối với tam giác ACE là: AC+CE>AE
CE - AC < AE
Vì AB=CE(theo chứng minh trên) => AC+AB>AE \(\Rightarrow\frac{AC+AB}{2}>\frac{AE}{2}=AM\)(1)
AB - AC < AE \(\Rightarrow\frac{AB-AC}{2}< \frac{AE}{2}=AM\)(2)
Từ (1) và (2) \(\Rightarrow\frac{AB-AC}{2}< AM< \frac{AB+AC}{2}\)